Search Results

Now showing 1 - 3 of 3
  • Item
    Weak electron irradiation suppresses the anomalous magnetization of N-doped diamond crystals
    (Weinheim : Wiley-VCH, 2021) Setzer, Annette; Esquinazi, Pablo D.; Daikos, Olesya; Scherzer, Tom; Pöppl, Andreas; Staacke, Robert; Lühmann, Tobias; Pezzagna, Sebastien; Knolle, Wolfgang; Buga, Sergei; Abel, Bernd; Meijer, Jan
    Several diamond bulk crystals with a concentration of electrically neutral single substitutional nitrogen atoms of ≲80 ppm, the so-called C or P1 centers, are irradiated with electrons at 10 MeV energy and low fluence. The results show a complete suppression of the irreversible behavior in field and temperature of the magnetization below 30 K, after a decrease in ≲40 ppm in the concentration of C centers produced by the electron irradiation. This result indicates that magnetic C centers are at the origin of the large hysteretic behavior found recently in nitrogen-doped diamond crystals. This is remarkable because of the relatively low density of C centers, stressing the extraordinary role of the C centers in triggering those phenomena in diamond at relatively high temperatures. After annealing the samples at high temperatures in vacuum, the hysteretic behavior is partially recovered.
  • Item
    Gold-Induced Fibril Growth: The Mechanism of Surface-Facilitated Amyloid Aggregation
    (Weinheim : Wiley-VCH, 2016) Gladytz, Anika; Abel, Bernd; Risselada, Herre Jelger
    The question of how amyloid fibril formation is influenced by surfaces is crucial for a detailed understanding of the process in vivo. We applied a combination of kinetic experiments and molecular dynamics simulations to elucidate how (model) surfaces influence fibril formation of the amyloid-forming sequences of prion protein SUP35 and human islet amyloid polypeptide. The kinetic data suggest that structural reorganization of the initial peptide corona around colloidal gold nanoparticles is the rate-limiting step. The molecular dynamics simulations reveal that partial physisorption to the surface results in the formation of aligned monolayers, which stimulate the formation of parallel, critical oligomers. The general mechanism implies that the competition between the underlying peptide–peptide and peptide–surface interactions must strike a balance to accelerate fibril formation.
  • Item
    Green-Emissive Zn2+ Complex Supported by a Macrocyclic Schiff-Base/Calix[4]arene-Ligand: Crystallographic and Spectroscopic Characterization
    (Weinheim : Wiley-VCH, 2021) Ullmann, Steve; Börner, Martin; Kahnt, Axel; Abel, Bernd; Kersting, Berthold
    The macrocyclic calix[4]arene ligand H2L comprises two non-fluorescent 2,6-bis-(iminomethyl)phenolate chromophores, which show a chelation-enhanced fluorescence enhancement upon Zn2+ ion complexation. Macrocyclic [ZnL] complexes aggregate in the absence of external coligands via intermolecular Zn−N bonds to give dimeric [ZnL]2 structures comprising two five-coordinated Zn2+ ions. The absorption and emission wavelengths are bathochromically shifted upon going from the liquid (λmax,abs (CH2Cl2)=404 nm, λmax,em (CH2Cl2)=484 nm) to the solid state (λmax,abs=424 nm (4 wt%, BaSO4 pellet), λmax,em=524 nm (neat solid)). Insights into the electronic nature of the UV-vis transitions were obtained with time-dependent density functional theory (TD-DFT) calculations for a truncated model complex.