Search Results

Now showing 1 - 2 of 2
  • Item
    Numerical Simulation of Species Segregation and 2D Distribution in the Floating Zone Silicon Crystals
    (Basel : MDPI, 2022) Surovovs, Kirils; Surovovs, Maksims; Sabanskis, Andrejs; Virbulis, Jānis; Dadzis, Kaspars; Menzel, Robert; Abrosimov, Nikolay
    The distribution of dopants and impurities in silicon grown with the floating zone method determines the electrical resistivity and other important properties of the crystals. A crucial process that defines the transport of these species is the segregation at the crystallization interface. To investigate the influence of the melt flow on the effective segregation coefficient as well as on the global species transport and the resulting distribution in the grown crystal, we developed a new coupled numerical model. Our simulation results include the shape of phase boundaries, melt flow velocity and temperature, species distribution in the melt and, finally, the radial and axial distributions in the grown crystal. We concluded that the effective segregation coefficient is not constant during the growth process but rather increases for larger melt diameters due to less intensive melt mixing.
  • Item
    Quasi-Transient Calculation of Czochralski Growth of Ge Crystals Using the Software Elmer
    (Basel : MDPI, 2019) Miller, Wolfram; Abrosimov, Nikolay; Fischer, Jörg; Gybin, Alexander; Juda, Uta; Kayser, Stefan; Janicskó-Csáthy, Jószef
    A numerical scheme was developed to compute the thermal and stress fields of the Czochralski process in a quasi-time dependent mode. The growth velocity was computed from the geometrical changes in melt and crystal due to pulling for every stage, for which the thermal and stress fields were computed by using the open source software Elmer. The method was applied to the Czochralski growth of Ge crystals by inductive heating. From a series of growth experiments, we chose one as a reference to check the validity of the scheme with respect to this Czochralski process. A good agreement both for the shapes of the melt/crystal interface at various time steps and the change in power consumption with process time was observed. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.