Search Results

Now showing 1 - 1 of 1
  • Item
    Development of the fabrication process and characterization of piezoelectric BaTiO3/epoxy composite used for coated ultrasonic transducer patterns in structural health monitoring
    (Cambridge : arXiv, 2016) Bareiro Ferreira, Oscar; Sridaran Venkat, Ramanan; Adam, Jens; Boller, Christian
    Structural health monitoring (SHM) is based on integrating and/or adapting a sensor system into a structure such that a tolerable damage to occur can be monitored. This requires a network of transducers specifically when this SHM approach is considered as a monitoring system such as based on guided waves. A desirable solution would be to get a transducer network simply ‘printed’ on the structure considered once the network has been designed such as through a simulation approach. In the paper proposed the fabrication process and characterization of a piezoelectric composite to be used as an ultrasonic transducer for damage sensing of structures based on SHM using guided waves is first considered. The composite consists of piezoelectric BaTiO3 particles homogenously distributed in an epoxy resin matrix. A paste with a solid volume fraction of up to 50 vol% was prepared by the direct mechanical mixing of the piezoelectric particles in the epoxy matrix. Due to the ferroelectric properties of BaTiO3 the polarization of the composite is required with a high electric field prior to use. Two electrodes placed on both sides of the samples are required to measure the dielectric and electromechanical properties of the composite in the form of a thick film. The influence of the volume fraction of BaTiO3 on the dialectic properties and piezoelectric transversal constant (d33) of the piezoelectric composite will be shown. Beyond this more materials processing related work performance of those transducers will be demonstrated. This will be done in terms of getting those coated as a transducer pattern/network on a hosting structure after having had the transducer network determined through simulation. Validation of the approach will be done by looking at the transducer network’s performance in terms of detecting guided acoustic waves.