Search Results

Now showing 1 - 2 of 2
  • Item
    Detection of antiskyrmions by topological Hall effect in Heusler compounds
    (Woodbury, NY : Inst., 2020) Kumar, Vivek; Kumar, Nitesh; Reehuis, Manfred; Gayles, Jacob; Sukhanov, A.S.; Hoser, Andreas; Damay, Françoise; Shekhar, Chandra; Adler, Peter; Felser, Claudia
    Heusler compounds having D2d crystal symmetry gained much attention recently due to the stabilization of a vortexlike spin texture called antiskyrmions in thin lamellae of Mn1.4Pt0.9Pd0.1Sn as reported in the work of Nayak et al. [Nature (London) 548, 561 (2017)10.1038/nature23466]. Here we show that bulk Mn1.4Pt0.9Pd0.1Sn undergoes a spin-reorientation transition from a collinear ferromagnetic to a noncollinear configuration of Mn moments below 135 K, which is accompanied by the emergence of a topological Hall effect. We tune the topological Hall effect in Pd and Rh substituted Mn1.4PtSn Heusler compounds by changing the intrinsic magnetic properties and spin textures. A unique feature of the present system is the observation of a zero-field topological Hall resistivity with a sign change which indicates the robust formation of antiskyrmions. © 2020 authors. Published by the American Physical Society.
  • Item
    Hidden Charge Order in an Iron Oxide Square-Lattice Compound
    (College Park, Md. : APS, 2021) Kim, Jung-Hwa; Peets, Darren C.; Reehuis, Manfred; Adler, Peter; Maljuk, Andrey; Ritschel, Tobias; Allison, Morgan C.; Geck, Jochen; Mardegan, Jose R. L.; Bereciartua Perez, Pablo J.; Francoual, Sonia; Walters, Andrew C.; Keller, Thomas; Abdala, Paula M.; Pattison, Philip; Dosanjh, Pinder; Keimer, Bernhard
    Since the discovery of charge disproportionation in the FeO2 square-lattice compound Sr3Fe2O7 by Mössbauer spectroscopy more than fifty years ago, the spatial ordering pattern of the disproportionated charges has remained “hidden” to conventional diffraction probes, despite numerous x-ray and neutron scattering studies. We have used neutron Larmor diffraction and Fe K-edge resonant x-ray scattering to demonstrate checkerboard charge order in the FeO2 planes that vanishes at a sharp second-order phase transition upon heating above 332 K. Stacking disorder of the checkerboard pattern due to frustrated interlayer interactions broadens the corresponding superstructure reflections and greatly reduces their amplitude, thus explaining the difficulty of detecting them by conventional probes. We discuss the implications of these findings for research on “hidden order” in other materials.