Search Results

Now showing 1 - 5 of 5
  • Item
    Network-based identification and characterization of teleconnections on different scales
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Agarwal, Ankit; Caesar, Levke; Marwan, Norbert; Maheswaran, Rathinasamy; Merz, Bruno; Kurths, Jürgen
    Sea surface temperature (SST) patterns can – as surface climate forcing – affect weather and climate at large distances. One example is El Niño-Southern Oscillation (ENSO) that causes climate anomalies around the globe via teleconnections. Although several studies identified and characterized these teleconnections, our understanding of climate processes remains incomplete, since interactions and feedbacks are typically exhibited at unique or multiple temporal and spatial scales. This study characterizes the interactions between the cells of a global SST data set at different temporal and spatial scales using climate networks. These networks are constructed using wavelet multi-scale correlation that investigate the correlation between the SST time series at a range of scales allowing instantaneously deeper insights into the correlation patterns compared to traditional methods like empirical orthogonal functions or classical correlation analysis. This allows us to identify and visualise regions of – at a certain timescale – similarly evolving SSTs and distinguish them from those with long-range teleconnections to other ocean regions. Our findings re-confirm accepted knowledge about known highly linked SST patterns like ENSO and the Pacific Decadal Oscillation, but also suggest new insights into the characteristics and origins of long-range teleconnections like the connection between ENSO and Indian Ocean Dipole.
  • Item
    Farmer typology to understand differentiated climate change adaptation in Himalaya
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Shukla, Roopam; Agarwal, Ankit; Gornott, Christoph; Sachdeva, Kamna; Joshi, P.K.
    Smallholder farmers’ responses to the climate-induced agricultural changes are not uniform but rather diverse, as response adaptation strategies are embedded in the heterogonous agronomic, social, economic, and institutional conditions. There is an urgent need to understand the diversity within the farming households, identify the main drivers and understand its relationship with household adaptation strategies. Typology construction provides an efficient method to understand farmer diversity by delineating groups with common characteristics. In the present study, based in the Uttarakhand state of Indian Western Himalayas, five farmer types were identified on the basis of resource endowment and agriculture orientation characteristics. Factor analysis followed by sequential agglomerative hierarchial and K-means clustering was use to delineate farmer types. Examination of adaptation strategies across the identified farmer types revealed that mostly contrasting and type-specific bundle of strategies are adopted by farmers to ensure livelihood security. Our findings show that strategies that incurred high investment, such as infrastructural development, are limited to high resource-endowed farmers. In contrast, the low resourced farmers reported being progressively disengaging with farming as a livelihood option. Our results suggest that the proponents of effective adaptation policies in the Himalayan region need to be cognizant of the nuances within the farming communities to capture the diverse and multiple adaptation needs and constraints of the farming households. © 2019, The Author(s).
  • Item
    Optimal design of hydrometric station networks based on complex network analysis
    (Munich : EGU, 2020) Agarwal, Ankit; Marwan, Norbert; Maheswaran, Rathinasamy; Ozturk, Ugur; Kurths, Jürgen; Merz, Bruno
    Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure - the weighted degree-betweenness (WDB) measure - to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail © Author(s) 2020.
  • Item
    Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach
    (Katlenburg-Lindau : European Geophysical Society, 2019) Kurths, Jürgen; Agarwal, Ankit; Shukla, Roopam; Marwan, Norbert; Rathinasamy, Maheswaran; Caesar, Levke; Krishnan, Raghavan; Merz, Bruno
    A better understanding of precipitation dynamics in the Indian subcontinent is required since India's society depends heavily on reliable monsoon forecasts. We introduce a non-linear, multiscale approach, based on wavelets and event synchronization, for unravelling teleconnection influences on precipitation. We consider those climate patterns with the highest relevance for Indian precipitation. Our results suggest significant influences which are not well captured by only the wavelet coherence analysis, the state-of-the-art method in understanding linkages at multiple timescales. We find substantial variation across India and across timescales. In particular, El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mainly influence precipitation in the south-east at interannual and decadal scales, respectively, whereas the North Atlantic Oscillation (NAO) has a strong connection to precipitation, particularly in the northern regions. The effect of the Pacific Decadal Oscillation (PDO) stretches across the whole country, whereas the Atlantic Multidecadal Oscillation (AMO) influences precipitation particularly in the central arid and semi-arid regions. The proposed method provides a powerful approach for capturing the dynamics of precipitation and, hence, helps improve precipitation forecasting. © 2019 Author(s).
  • Item
    Multiscale Spatiotemporal Analysis of Extreme Events in the Gomati River Basin, India
    (Basel : MDPI, 2021) Kalyan, AVS; Ghose, Dillip Kumar; Thalagapu, Rahul; Guntu, Ravi Kumar; Agarwal, Ankit; Kurths, Jürgen; Rathinasamy, Maheswaran
    Accelerating climate change is causing considerable changes in extreme events, leading to immense socioeconomic loss of life and property. In this study, we investigate the characteristics of extreme climate events at a regional scale to ‐understand these events’ propagation in the near fu-ture. We have considered sixteen extreme climate indices defined by the World Meteorological Or-ganization’s Expert Team on Climate Change Detection and Indices from a long‐term dataset (1951– 2018) of 53 locations in Gomati River Basin, North India. We computed the present and future spatial variation of theses indices using the Sen’s slope estimator and Hurst exponent analysis. The periodicities and non‐stationary features were estimated using the continuous wavelet transform. Bivariate copulas were fitted to estimate the joint probabilities and return periods for certain com-binations of indices. The study results show different variation in the patterns of the extreme climate indices: D95P, R95TOT, RX5D, and RX showed negative trends for all stations over the basin. The number of dry days (DD) showed positive trends over the basin at 36 stations out of those 17 stations are statistically significant. A sustainable decreasing trend is observed for D95P at all stations, indi-cating a reduction in precipitation in the future. DD exhibits a sustainable decreasing trend at almost all the stations over the basin barring a few exceptions highlight that the basin is turning drier. The wavelet power spectrum for D95P showed significant power distributed across the 2–16‐year bands, and the two‐year period was dominant in the global power spectrum around 1970–1990. One interest-ing finding is that a dominant two‐year period in D95P has changed to the four years after 1984 and remains in the past two decades. The joint return period’s resulting values are more significant than values resulting from univariate analysis (R95TOT with 44% and RTWD of 1450 mm). The difference in values highlights that ignoring the mutual dependence can lead to an underestimation of extremes. © 2021 by the author. Licensee MDPI, Basel, Switzerland.