Search Results

Now showing 1 - 3 of 3
  • Item
    An assessment of two classes of variational multiscale methods for the simulation of incompressible turbulent flows
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Ahmed, Naveed; John, Volker
    A numerical assessment of two classes of variational multiscale (VMS) methods for the simulation of incompressible flows is presented. Two types of residual-based VMS methods and two types of projection-based VMS methods are included in this assessment. The numerical simulations are performed at turbulent channel flow problems with various friction Reynolds numbers. It turns out the the residual-based VMS methods, in particular when used with a pair of inf-sup stable finite elements, give usually the most accurate results for second order statistics. For this pair of finite element spaces, a flexible GMRES method with a Least Squares Commutator (LSC) preconditioner proved to be an efficient solver.
  • Item
    A pressure-robust discretization of Oseen's equation using stabilization in the vorticity equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Ahmed, Naveed; Barrenechea, Gabriel R.; Burman, Erik; Guzmán, Johnny; Linke, Alexander; Merdon, Christian
    Discretization of Navier--Stokes' equations using pressure-robust finite element methods is considered for the high Reynolds number regime. To counter oscillations due to dominating convection we add a stabilization based on a bulk term in the form of a residual-based least squares stabilization of the vorticity equation supplemented by a penalty term on (certain components of) the gradient jump over the elements faces. Since the stabilization is based on the vorticity equation, it is independent of the pressure gradients, which makes it pressure-robust. Thus, we prove pressureindependent error estimates in the linearized case, known as Oseen's problem. In fact, we prove an O(hk+1/2) error estimate in the L2-norm that is known to be the best that can be expected for this type of problem. Numerical examples are provided that, in addition to confirming the theoretical results, show that the present method compares favorably to the classical residual-based SUPG stabilization.
  • Item
    An assessment of solvers for algebraically stabilized discretizations of convection-diffusion-reaction equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Jha, Abhinav; Pártl, Ondřej; Ahmed, Naveed; Kuzmin, Dmitri
    We consider flux-corrected finite element discretizations of 3D convection-dominated transport problems and assess the computational efficiency of algorithms based on such approximations. The methods under investigation include flux-corrected transport schemes and monolithic limiters. We discretize in space using a continuous Galerkin method and P1 or Q1 finite elements. Time integration is performed using the Crank-Nicolson method or an explicit strong stability preserving Runge-Kutta method. Nonlinear systems are solved using a fixed-point iteration method, which requires solution of large linear systems at each iteration or time step. The great variety of options in the choice of discretization methods and solver components calls for a dedicated comparative study of existing approaches. To perform such a study, we define new 3D test problems for time dependent and stationary convection-diffusion-reaction equations. The results of our numerical experiments illustrate how the limiting technique, time discretization and solver impact on the overall performance.