Search Results

Now showing 1 - 3 of 3
  • Item
    Far field imaging of a dielectric inclusion
    (Bristol : IOP Publ., 2015) Wahab, Abdul; Ahmed, Naveed; Abbas, Tasawar
    A non-iterative topological sensitivity framework for guaranteed far field detection of a dielectric inclusion is presented. The cases of single and multiple measurements of the electric far field scattering amplitude at a fixed frequency are taken into account. The performance of the algorithm is analyzed theoretically in terms of resolution, stability, and signal-to-noise ratio.
  • Item
    On the feasibility of using open source solvers for the simulation of a turbulent air flow in a dairy barn
    (Amsterdam [u.a.] : Elsevier, 2020) Janke, David; Caiazzo, Alfonso; Ahmed, Naveed; Alia, Najib; Knoth, Oswald; Moreau, Baptiste; Wilbrandt, Ulrich; Willink, Dilya; Amon, Thomas; John, Volker
    Two transient open source solvers, OpenFOAM and ParMooN, and the commercial solver Ansys Fluent are assessed with respect to the simulation of the turbulent air flow inside and around a dairy barn. For this purpose, data were obtained in an experimental campaign at a 1:100 scaled wind tunnel model. All solvers used different meshes, discretization schemes, and turbulence models. The experimental data and numerical results agree well for time-averaged stream-wise and vertical-wise velocities. In particular, the air exchange was predicted with high accuracy by both open source solvers with relative differences less than 4% and by the commercial solver with a relative difference of 9% compared to the experimental results. With respect to the turbulent quantities, good agreements at the second (downwind) half of the barn inside and especially outside the barn could be achieved, where all codes accurately predicted the flow separation and, in many cases, the root-mean-square velocities. Deviations between simulations and experimental results regarding turbulent quantities could be observed in the first part of the barn. These deviations can be attributed to the utilization of roughness elements between inlet and barn in the experiment that were not modeled in the numerical simulations. Both open source solvers proved to be promising tools for the accurate prediction of time-dependent phenomena in an agricultural context, e.g., like the transport of particulate matter or pathogen-laden aerosols in and around agricultural buildings. © 2020 The Authors
  • Item
    Free Discharge of Subsurface Drainage Effluent: An Alternate Design of the Surface Drain System in Pakistan
    (Basel : MDPI AG, 2021) Imran, Muhammad Ali; Xu, Jinlan; Sultan, Muhammad; Shamshiri, Redmond R.; Ahmed, Naveed; Javed, Qaiser; Asfahan, Hafiz Muhammad; Latif, Yasir; Usman, Muhammad; Ahmad, Riaz
    In Pakistan, many subsurface (SS) drainage projects were launched by the Salinity Control and Reclamation Project (SCARP) to deal with twin problems (waterlogging and salinity). In some cases, sump pumps were installed for the disposal of SS effluent into surface drainage channels. Presently, sump pumps have become dysfunctional due to social and financial constraints. This study evaluates the alternate design of the Paharang drainage system that could permit the discharge of the SS drainage system in the response of gravity. The proposed design was completed after many successive trials in terms of lowering the bed level and decreasing the channel bed slope. Interconnected MS-Excel worksheets were developed to design the L-section and X-section. Design continuity of the drainage system was achieved by ensuring the bed and water levels of the receiving drain were lower than the outfalling drain. The drain cross-section was set within the present row with a few changes on the service roadside. The channel side slope was taken as 1:1.5 and the spoil bank inner and outer slopes were kept as 1:2 for the entire design. The earthwork was calculated in terms of excavation for lowering the bed level and increasing the drain section to place the excavated materials in a specific manner. The study showed that modification in the design of the Paharang drainage system is technically admissible and allows for the continuous discharge of SS drainage effluent from the area.