Search Results

Now showing 1 - 10 of 19
Loading...
Thumbnail Image
Item

Far field imaging of a dielectric inclusion

2015, Wahab, Abdul, Ahmed, Naveed, Abbas, Tasawar

A non-iterative topological sensitivity framework for guaranteed far field detection of a dielectric inclusion is presented. The cases of single and multiple measurements of the electric far field scattering amplitude at a fixed frequency are taken into account. The performance of the algorithm is analyzed theoretically in terms of resolution, stability, and signal-to-noise ratio.

Loading...
Thumbnail Image
Item

A pressure-robust discretization of Oseen's equation using stabilization in the vorticity equation

2020, Ahmed, Naveed, Barrenechea, Gabriel R., Burman, Erik, Guzmán, Johnny, Linke, Alexander, Merdon, Christian

Discretization of Navier--Stokes' equations using pressure-robust finite element methods is considered for the high Reynolds number regime. To counter oscillations due to dominating convection we add a stabilization based on a bulk term in the form of a residual-based least squares stabilization of the vorticity equation supplemented by a penalty term on (certain components of) the gradient jump over the elements faces. Since the stabilization is based on the vorticity equation, it is independent of the pressure gradients, which makes it pressure-robust. Thus, we prove pressureindependent error estimates in the linearized case, known as Oseen's problem. In fact, we prove an O(hk+1/2) error estimate in the L2-norm that is known to be the best that can be expected for this type of problem. Numerical examples are provided that, in addition to confirming the theoretical results, show that the present method compares favorably to the classical residual-based SUPG stabilization.

Loading...
Thumbnail Image
Item

Adaptive time step control for higher order variational time discretizations applied to convection-diffusion equations

2014, Ahmed, Naveed, John, Volker

Higher order variational time stepping schemes allow an efficient post-processing for computing a higher order solution. This paper presents an adaptive algorithm whose time step control utilizes the post-processed solution. The algorithm is applied to convection-dominated convection-diffusion equations. It is shown that the length of the time step properly reflects the dynamics of the solution. The numerical costs of the adaptive algorithm are discussed.

Loading...
Thumbnail Image
Item

A local projection stabilization/continuous Galerkin-Petrov method for incompressible flow problems

2016, Ahmed, Naveed, John, Volker, Matthies, Gunar, Novo, Julia

The local projection stabilization (LPS) method in space is considered to approximate the evolutionary Oseen equations. Optimal error bounds independent of the viscosity parameter are obtained in the continuous-in-time case for the approximations of both velocity and pressure. In addition, the fully discrete case in combination with higher order continuous Galerkin-Petrov (cGP) methods is studied. Error estimates of order k + 1 are proved, where k denotes the polynomial degree in time, assuming that the convective term is time-independent. Numerical results show that the predicted order is also achieved in the general case of time-dependent convective terms.

Loading...
Thumbnail Image
Item

On the feasibility of using open source solvers for the simulation of a turbulent air flow in a dairy barn

2020, Janke, David, Caiazzo, Alfonso, Ahmed, Naveed, Alia, Najib, Knoth, Oswald, Moreau, Baptiste, Wilbrandt, Ulrich, Willink, Dilya, Amon, Thomas, John, Volker

Two transient open source solvers, OpenFOAM and ParMooN, and the commercial solver Ansys Fluent are assessed with respect to the simulation of the turbulent air flow inside and around a dairy barn. For this purpose, data were obtained in an experimental campaign at a 1:100 scaled wind tunnel model. All solvers used different meshes, discretization schemes, and turbulence models. The experimental data and numerical results agree well for time-averaged stream-wise and vertical-wise velocities. In particular, the air exchange was predicted with high accuracy by both open source solvers with relative differences less than 4% and by the commercial solver with a relative difference of 9% compared to the experimental results. With respect to the turbulent quantities, good agreements at the second (downwind) half of the barn inside and especially outside the barn could be achieved, where all codes accurately predicted the flow separation and, in many cases, the root-mean-square velocities. Deviations between simulations and experimental results regarding turbulent quantities could be observed in the first part of the barn. These deviations can be attributed to the utilization of roughness elements between inlet and barn in the experiment that were not modeled in the numerical simulations. Both open source solvers proved to be promising tools for the accurate prediction of time-dependent phenomena in an agricultural context, e.g., like the transport of particulate matter or pathogen-laden aerosols in and around agricultural buildings. © 2020 The Authors

Loading...
Thumbnail Image
Item

ParMooN - a modernized program package based on mapped finite elements

2016, Wilbrandt, Ulrich, Bartsch, Clemens, Ahmed, Naveed, Alia, Najib, Anker, Felix, Blank, Laura, Caiazzo, Alfonso, Ganesa, Sashikumaar, Giere, Swetlana, Matthies, Gunar, Meesala, Raviteja, Shamim, Abdus, Venkatesan, Jagannath, John, Volker

PARMOON is a program package for the numerical solution of elliptic and parabolic partial differential equations. It inherits the distinct features of its predecessor MOONMD [28]: strict decoupling of geometry and finite element spaces, implementation of mapped finite elements as their definition can be found in textbooks, and a geometric multigrid preconditioner with the option to use different finite element spaces on different levels of the multigrid hierarchy. After having presented some thoughts about in-house research codes, this paper focuses on aspects of the parallelization, which is the main novelty of PARMOON. Numerical studies, performed on compute servers, assess the efficiency of the parallelized geometric multigrid preconditioner in comparison with parallel solvers that are available in external libraries. The results of these studies give a first indication whether the cumbersome implementation of the parallelized geometric multigrid method was worthwhile or not.

Loading...
Thumbnail Image
Item

An assessment of solvers for algebraically stabilized discretizations of convection-diffusion-reaction equations

2021, Jha, Abhinav, Pártl, Ondřej, Ahmed, Naveed, Kuzmin, Dmitri

We consider flux-corrected finite element discretizations of 3D convection-dominated transport problems and assess the computational efficiency of algorithms based on such approximations. The methods under investigation include flux-corrected transport schemes and monolithic limiters. We discretize in space using a continuous Galerkin method and P1 or Q1 finite elements. Time integration is performed using the Crank-Nicolson method or an explicit strong stability preserving Runge-Kutta method. Nonlinear systems are solved using a fixed-point iteration method, which requires solution of large linear systems at each iteration or time step. The great variety of options in the choice of discretization methods and solver components calls for a dedicated comparative study of existing approaches. To perform such a study, we define new 3D test problems for time dependent and stationary convection-diffusion-reaction equations. The results of our numerical experiments illustrate how the limiting technique, time discretization and solver impact on the overall performance.

Loading...
Thumbnail Image
Item

A review of variational multiscale methods for the simulation of turbulent incompressible flows

2015, Ahmed, Naveed, Rebollo, Tomás Chacón, John, Volker, Rubino, Samuele

Various realizations of variational multiscale (VMS) methods for simulating turbulent incompressible flows have been proposed in the past fifteen years. All of these realizations obey the basic principles of VMS methods: They are based on the variational formulation of the incompressible Navier-Stokes equations and the scale separation is defined by projections. However, apart from these common basic features, the various VMS methods look quite different. In this review, the derivation of the different VMS methods is presented in some detail and their relation among each other and also to other discretizations is discussed. Another emphasis consists in giving an overview about known results from the numerical analysis of the VMS methods. A few results are presented in detail to highlight the used mathematical tools. Furthermore, the literature presenting numerical studies with the VMS methods is surveyed and the obtained results are summarized.

Loading...
Thumbnail Image
Item

Free Discharge of Subsurface Drainage Effluent: An Alternate Design of the Surface Drain System in Pakistan

2021, Imran, Muhammad Ali, Xu, Jinlan, Sultan, Muhammad, Shamshiri, Redmond R., Ahmed, Naveed, Javed, Qaiser, Asfahan, Hafiz Muhammad, Latif, Yasir, Usman, Muhammad, Ahmad, Riaz

In Pakistan, many subsurface (SS) drainage projects were launched by the Salinity Control and Reclamation Project (SCARP) to deal with twin problems (waterlogging and salinity). In some cases, sump pumps were installed for the disposal of SS effluent into surface drainage channels. Presently, sump pumps have become dysfunctional due to social and financial constraints. This study evaluates the alternate design of the Paharang drainage system that could permit the discharge of the SS drainage system in the response of gravity. The proposed design was completed after many successive trials in terms of lowering the bed level and decreasing the channel bed slope. Interconnected MS-Excel worksheets were developed to design the L-section and X-section. Design continuity of the drainage system was achieved by ensuring the bed and water levels of the receiving drain were lower than the outfalling drain. The drain cross-section was set within the present row with a few changes on the service roadside. The channel side slope was taken as 1:1.5 and the spoil bank inner and outer slopes were kept as 1:2 for the entire design. The earthwork was calculated in terms of excavation for lowering the bed level and increasing the drain section to place the excavated materials in a specific manner. The study showed that modification in the design of the Paharang drainage system is technically admissible and allows for the continuous discharge of SS drainage effluent from the area.

Loading...
Thumbnail Image
Item

Detection of electromagnetic inclusions using topological sensitivity

2016, Wahab, Abdul, Abbas, Tasawar, Ahmed, Naveed, Zia, Qazi Muhammad Zaigham

In this article a topological sensitivity framework for far field detection of a diametrically small electromagnetic inclusion is established. The cases of single and multiple measurements of the electric far field scattering amplitude at a fixed frequency are taken into account. The performance of the algorithm is analyzed theoretically in terms of its resolution and sensitivity for locating an inclusion. The stability of the framework with respect to measurement and medium noises is discussed. Moreover, the quantitative results for signal-to-noise ratio are presented. A few numerical results are presented to illustrate the detection capabilities of the proposed framework with single and multiple measurements.