Search Results

Now showing 1 - 10 of 14
Loading...
Thumbnail Image
Item

EARLINET instrument intercomparison campaigns: Overview on strategy and results

2016, Wandinger, Ulla, Freudenthaler, Volker, Baars, Holger, Amodeo, Aldo, Engelmann, Ronny, Mattis, Ina, GroĂŸ, Silke, Pappalardo, Gelsomina, Giunta, Aldo, D'Amico, Giuseppe, Chaikovsky, Anatoli, Osipenko, Fiodor, Slesar, Alexander, Nicolae, Doina, Belegante, Livio, Talianu, Camelia, Serikov, Ilya, LinnĂ©, Holger, Jansen, Friedhelm, Apituley, Arnoud, Wilson, Keith M., de Graaf, Martin, Trickl, Thomas, Giehl, Helmut, Adam, Mariana, ComerĂ³n, Adolfo, Muñoz-Porcar, Constantino, Rocadenbosch, Francesc, Sicard, MichaĂ«l, TomĂ¡s, Sergio, Lange, Diego, Kumar, Dhiraj, Pujadas, Manuel, Molero, Francisco, FernĂ¡ndez, Alfonso J., Alados-Arboledas, Lucas, Bravo-Aranda, Juan Antonio, Navas-GuzmĂ¡n, Francisco, Guerrero-Rascado, Juan Luis, Granados-Muñoz, MarĂ­a JosĂ©, PreiĂŸler, Jana, Wagner, Frank, Gausa, Michael, Grigorov, Ivan, Stoyanov, Dimitar, Iarlori, Marco, Rizi, Vincenco, Spinelli, Nicola, Boselli, Antonella, Wang, Xuan, Feudo, Teresa Lo, Perrone, Maria Rita, De Tomas, Ferdinando, Burlizzi, Pasquale

This paper introduces the recent European Aerosol Research Lidar Network (EARLINET) quality-assurance efforts at instrument level. Within two dedicated campaigns and five single-site intercomparison activities, 21 EARLINET systems from 18 EARLINET stations were intercompared between 2009 and 2013. A comprehensive strategy for campaign setup and data evaluation has been established. Eleven systems from nine EARLINET stations participated in the EARLINET Lidar Intercomparison 2009 (EARLI09). In this campaign, three reference systems were qualified which served as traveling standards thereafter. EARLINET systems from nine other stations have been compared against these reference systems since 2009. We present and discuss comparisons at signal and at product level from all campaigns for more than 100 individual measurement channels at the wavelengths of 355, 387, 532, and 607 nm. It is shown that in most cases, a very good agreement of the compared systems with the respective reference is obtained. Mean signal deviations in predefined height ranges are typically below ±2 %. Particle backscatter and extinction coefficients agree within ±2â€¯â€‰Ă—â€‰â€¯10−4 km−1 sr−1 and ± 0.01 km−1, respectively, in most cases. For systems or channels that showed larger discrepancies, an in-depth analysis of deficiencies was performed and technical solutions and upgrades were proposed and realized. The intercomparisons have reinforced confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements for some instruments and to identify major challenges that need to be tackled in the future.

Loading...
Thumbnail Image
Item

Changes in black carbon emissions over Europe due to COVID-19 lockdowns

2021, Evangeliou, Nikolaos, Platt, Stephen M., Eckhardt, Sabine, Lund Myhre, Cathrine, Laj, Paolo, Alados-Arboledas, Lucas, Backman, John, Brem, Benjamin T., Fiebig, Markus, Flentje, Harald, Marinoni, Angela, Pandolfi, Marco, Yus-Dìez, Jesus, Prats, Natalia, Putaud, Jean P., Sellegri, Karine, Sorribas, Mar, Eleftheriadis, Konstantinos, Vratolis, Stergios, Wiedensohler, Alfred, Stohl, Andreas

Following the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for COVID-19 in December 2019 in Wuhan (China) and its spread to the rest of the world, the World Health Organization declared a global pandemic in March 2020. Without effective treatment in the initial pandemic phase, social distancing and mandatory quarantines were introduced as the only available preventative measure. In contrast to the detrimental societal impacts, air quality improved in all countries in which strict lockdowns were applied, due to lower pollutant emissions. Here we investigate the effects of the COVID-19 lockdowns in Europe on ambient black carbon (BC), which affects climate and damages health, using in situ observations from 17 European stations in a Bayesian inversion framework. BC emissions declined by 23 kt in Europe (20 % in Italy, 40 % in Germany, 34 % in Spain, 22 % in France) during lockdowns compared to the same period in the previous 5 years, which is partially attributed to COVID-19 measures. BC temporal variation in the countries enduring the most drastic restrictions showed the most distinct lockdown impacts. Increased particle light absorption in the beginning of the lockdown, confirmed by assimilated satellite and remote sensing data, suggests residential combustion was the dominant BC source. Accordingly, in central and Eastern Europe, which experienced lower than average temperatures, BC was elevated compared to the previous 5 years. Nevertheless, an average decrease of 11 % was seen for the whole of Europe compared to the start of the lockdown period, with the highest peaks in France (42 %), Germany (21 %), UK (13 %), Spain (11 %) and Italy (8 %). Such a decrease was not seen in the previous years, which also confirms the impact of COVID-19 on the European emissions of BC.

Loading...
Thumbnail Image
Item

An automatic observation-based aerosol typing method for EARLINET

2018, Papagiannopoulos, Nikolaos, Mona, Lucia, Amodeo, Aldo, D'Amico, Giuseppe, GumĂ  Claramunt, Pilar, Pappalardo, Gelsomina, Alados-Arboledas, Lucas, Guerrero-Rascado, Juan LuĂ­s, Amiridis, Vassilis, Kokkalis, Panagiotis, Apituley, Arnoud, Baars, Holger, Schwarz, Anja, Wandinger, Ulla, Binietoglou, Ioannis, Nicolae, Doina, Bortoli, Daniele, ComerĂ³n, Adolfo, RodrĂ­guez-GĂ³mez, Alejandro, Sicard, MichaĂ«l, Papayannis, Alex, Wiegner, Matthias

We present an automatic aerosol classification method based solely on the European Aerosol Research Lidar Network (EARLINET) intensive optical parameters with the aim of building a network-wide classification tool that could provide near-real-time aerosol typing information. The presented method depends on a supervised learning technique and makes use of the Mahalanobis distance function that relates each unclassified measurement to a predefined aerosol type. As a first step (training phase), a reference dataset is set up consisting of already classified EARLINET data. Using this dataset, we defined 8 aerosol classes: clean continental, polluted continental, dust, mixed dust, polluted dust, mixed marine, smoke, and volcanic ash. The effect of the number of aerosol classes has been explored, as well as the optimal set of intensive parameters to separate different aerosol types. Furthermore, the algorithm is trained with literature particle linear depolarization ratio values. As a second step (testing phase), we apply the method to an already classified EARLINET dataset and analyze the results of the comparison to this classified dataset. The predictive accuracy of the automatic classification varies between 59% (minimum) and 90% (maximum) from 8 to 4 aerosol classes, respectively, when evaluated against pre-classified EARLINET lidar. This indicates the potential use of the automatic classification to all network lidar data. Furthermore, the training of the algorithm with particle linear depolarization values found in the literature further improves the accuracy with values for all the aerosol classes around 80%. Additionally, the algorithm has proven to be highly versatile as it adapts to changes in the size of the training dataset and the number of aerosol classes and classifying parameters. Finally, the low computational time and demand for resources make the algorithm extremely suitable for the implementation within the single calculus chain (SCC), the EARLINET centralized processing suite.

Loading...
Thumbnail Image
Item

Experimental techniques for the calibration of lidar depolarization channels in EARLINET

2018, Belegante, Livio, Bravo-Aranda, Juan Antonio, Freudenthaler, Volker, Nicolae, Doina, Nemuc, Anca, Ene, Dragos, Alados-Arboledas, Lucas, Amodeo, Aldo, Pappalardo, Gelsomina, D'Amico, Giuseppe, Amato, Francesco, Engelmann, Ronny, Baars, Holger, Wandinger, Ulla, Papayannis, Alexandros, Kokkalis, Panos, Pereira, SĂ©rgio N.

Particle depolarization ratio retrieved from lidar measurements are commonly used for aerosol-typing studies, microphysical inversion, or mass concentration retrievals. The particle depolarization ratio is one of the primary parameters that can differentiate several major aerosol components but only if the measurements are accurate enough. The accuracy related to the retrieval of particle depolarization ratios is the driving factor for assessing and improving the uncertainties of the depolarization products. This paper presents different depolarization calibration procedures used to improve the quality of the depolarization data. The results illustrate a significant improvement of the depolarization lidar products for all the selected lidar stations that have implemented depolarization calibration procedures. The calibrated volume and particle depolarization profiles at 532-nm show values that fall within a range that is generally accepted in the literature.

Loading...
Thumbnail Image
Item

Assessment of lidar depolarization uncertainty by means of a polarimetric lidar simulator

2016, Bravo-Aranda, Juan Antonio, Belegante, Livio, Freudenthaler, Volker, Alados-Arboledas, Lucas, Nicolae, Doina, Granados-Muñoz, MarĂ­a JosĂ©, Guerrero-Rascado, Juan Luis, Amodeo, Aldo, D'Amico, Giusseppe, Engelmann, Ronny, Pappalardo, Gelsomina, Kokkalis, Panos, Mamouri, Rodanthy, Papayannis, Alex, Navas-GuzmĂ¡n, Francisco, Olmo, Francisco JosĂ©, Wandinger, Ulla, Amato, Francesco, Haeffelin, Martial

Lidar depolarization measurements distinguish between spherical and non-spherical aerosol particles based on the change of the polarization state between the emitted and received signal. The particle shape information in combination with other aerosol optical properties allows the characterization of different aerosol types and the retrieval of aerosol particle microphysical properties. Regarding the microphysical inversions, the lidar depolarization technique is becoming a key method since particle shape information can be used by algorithms based on spheres and spheroids, optimizing the retrieval procedure. Thus, the identification of the depolarization error sources and the quantification of their effects are crucial. This work presents a new tool to assess the systematic error of the volume linear depolarization ratio (δ), combining the Stokes–MĂ¼ller formalism and the complete sampling of the error space using the lidar model presented in Freudenthaler (2016a). This tool is applied to a synthetic lidar system and to several EARLINET lidars with depolarization capabilities at 355 or 532 nm. The lidar systems show relative errors of δ larger than 100 % for δ values around molecular linear depolarization ratios (∼ 0.004 and up to ∼  10 % for δ = 0.45). However, one system shows only relative errors of 25 and 0.22 % for δ = 0.004 and δ = 0.45, respectively, and gives an example of how a proper identification and reduction of the main error sources can drastically reduce the systematic errors of δ. In this regard, we provide some indications of how to reduce the systematic errors.

Loading...
Thumbnail Image
Item

An EARLINET early warning system for atmospheric aerosol aviation hazards

2020, Papagiannopoulos, Nikolaos, D’Amico, Giuseppe, Gialitaki, Anna, Ajtai, Nicolae, Alados-Arboledas, Lucas, Amodeo, Aldo, Amiridis, Vassilis, Baars, Holger, Balis, Dimitris, Binietoglou, Ioannis, ComerĂ³n, Adolfo, Dionisi, Davide, Falconieri, Alfredo, FrĂ©ville, Patrick, Kampouri, Anna, Mattis, Ina, Mijić, Zoran, Molero, Francisco, Papayannis, Alex, Pappalardo, Gelsomina, RodrĂ­guez-GĂ³mez, Alejandro, Solomos, Stavros, Mona, Lucia

A stand-alone lidar-based method for detecting airborne hazards for aviation in near real time (NRT) is presented. A polarization lidar allows for the identification of irregular-shaped particles such as volcanic dust and desert dust. The Single Calculus Chain (SCC) of the European Aerosol Research Lidar Network (EARLINET) delivers high-resolution preprocessed data: the calibrated total attenuated backscatter and the calibrated volume linear depolarization ratio time series. From these calibrated lidar signals, the particle backscatter coefficient and the particle depolarization ratio can be derived in temporally high resolution and thus provide the basis of the NRT early warning system (EWS). In particular, an iterative method for the retrieval of the particle backscatter is implemented. This improved capability was designed as a pilot that will produce alerts for imminent threats for aviation. The method is applied to data during two diverse aerosol scenarios: first, a record breaking desert dust intrusion in March 2018 over Finokalia, Greece, and, second, an intrusion of volcanic particles originating from Mount Etna, Italy, in June 2019 over Antikythera, Greece. Additionally, a devoted observational period including several EARLINET lidar systems demonstrates the network's preparedness to offer insight into natural hazards that affect the aviation sector. © 2020 Author(s).

Loading...
Thumbnail Image
Item

A European aerosol phenomenology - 6: Scattering properties of atmospheric aerosol particles from 28 ACTRIS sites

2018, Pandolfi, Marco, Alados-Arboledas, Lucas, Alastuey, Andrés, Andrade, Marcos, Angelov, Christo, Artiñano, Begoña, Backman, John, Baltensperger, Urs, Bonasoni, Paolo, Bukowiecki, Nicolas, Collaud Coen, Martine, Conil, Sébastien, Coz, Esther, Crenn, Vincent, Dudoitis, Vadimas, Ealo, Marina, Eleftheriadis, Kostas, Favez, Olivier, Fetfatzis, Prodromos, Fiebig, Markus, Flentje, Harald, Ginot, Patrick, Gysel, Martin, Henzing, Bas, Hoffer, Andras, Holubova Smejkalova, Adela, Kalapov, Ivo, Kalivitis, Nikos, Kouvarakis, Giorgos, Kristensson, Adam, Kulmala, Markku, Lihavainen, Heikki, Lunder, Chris, Luoma, Krista, Lyamani, Hassan, Marinoni, Angela, Mihalopoulos, Nikos, Moerman, Marcel, Nicolas, José, O'Dowd, Colin, Petäjä, Tuukka, Petit, Jean-Eudes, Pichon, Jean Marc, Prokopciuk, Nina, Putaud, Jean-Philippe, Rodríguez, Sergio, Sciare, Jean, Sellegri, Karine, Swietlicki, Erik, Titos, Gloria, Tuch, Thomas, Tunved, Peter, Ulevicius, Vidmantas, Vaishya, Aditya, Vana, Milan, Virkkula, Aki, Vratolis, Stergios, Weingartner, Ernest, Wiedensohler, Alfred, Laj, Paolo

This paper presents the light-scattering properties of atmospheric aerosol particles measured over the past decade at 28 ACTRIS observatories, which are located mainly in Europe. The data include particle light scattering (σsp) and hemispheric backscattering (σbsp) coefficients, scattering Ă…ngström exponent (SAE), backscatter fraction (BF) and asymmetry parameter (g). An increasing gradient of σsp is observed when moving from remote environments (arctic/mountain) to regional and to urban environments. At a regional level in Europe, σsp also increases when moving from Nordic and Baltic countries and from western Europe to central/eastern Europe, whereas no clear spatial gradient is observed for other station environments. The SAE does not show a clear gradient as a function of the placement of the station. However, a west-to-east-increasing gradient is observed for both regional and mountain placements, suggesting a lower fraction of fine-mode particle in western/south-western Europe compared to central and eastern Europe, where the fine-mode particles dominate the scattering. The g does not show any clear gradient by station placement or geographical location reflecting the complex relationship of this parameter with the physical properties of the aerosol particles. Both the station placement and the geographical location are important factors affecting the intraannual variability. At mountain sites, higher σsp and SAE values are measured in the summer due to the enhanced boundary layer influence and/or new particle-formation episodes. Conversely, the lower horizontal and vertical dispersion during winter leads to higher σsp values at all low-altitude sites in central and eastern Europe compared to summer. These sites also show SAE maxima in the summer (with corresponding g minima). At all sites, both SAE and g show a strong variation with aerosol particle loading. The lowest values of g are always observed together with low σsp values, indicating a larger contribution from particles in the smaller accumulation mode. During periods of high σsp values, the variation of g is less pronounced, whereas the SAE increases or decreases, suggesting changes mostly in the coarse aerosol particle mode rather than in the fine mode. Statistically significant decreasing trends of σsp are observed at 5 out of the 13 stations included in the trend analyses. The total reductions of σsp are consistent with those reported for PM2.5 and PM10 mass concentrations over similar periods across Europe.

Loading...
Thumbnail Image
Item

A global study of hygroscopicity-driven light-scattering enhancement in the context of other in situ aerosol optical properties

2021, Titos, Gloria, Burgos, MarĂ­a A., Zieger, Paul, Alados-Arboledas, Lucas, Baltensperger, Urs, Jefferson, Anne, Sherman, James, Weingartner, Ernest, Henzing, Bas, Luoma, Krista, O'Dowd, Colin, Wiedensohler, Alfred, Andrews, Elisabeth

The scattering and backscattering enhancement factors (f (RH) and fb(RH)) describe how aerosol particle light scattering and backscattering, respectively, change with relative humidity (RH). They are important parameters in estimating direct aerosol radiative forcing (DARF). In this study we use the dataset presented in Burgos et al. (2019) that compiles f (RH) and fb(RH) measurements at three wavelengths (i.e., 450, 550 and 700 nm) performed with tandem nephelometer systems at multiple sites around the world. We present an overview of f (RH) and fb(RH) based on both long-term and campaign observations from 23 sites representing a range of aerosol types. The scattering enhancement shows a strong variability from site to site, with no clear pattern with respect to the total scattering coefficient. In general, higher f (RH) is observed at Arctic and marine sites, while lower values are found at urban and desert sites, although a consistent pattern as a function of site type is not observed. The backscattering enhancement fb(RH) is consistently lower than f (RH) at all sites, with the difference between f (RH) and fb(RH) increasing for aerosol with higher f (RH). This is consistent with Mie theory, which predicts higher enhancement of the light scattering in the forward than in the backward direction as the particle takes up water. Our results show that the scattering enhancement is higher for PM1 than PM10 at most sites, which is also supported by theory due to the change in scattering efficiency with the size parameter that relates particle size and the wavelength of incident light. At marine-influenced sites this difference is enhanced when coarse particles (likely sea salt) predominate. For most sites, f (RH) is observed to increase with increasing wavelength, except at sites with a known dust influence where the spectral dependence of f (RH) is found to be low or even exhibit the opposite pattern. The impact of RH on aerosol properties used to calculate radiative forcing (e.g., single-scattering albedo, w0, and backscattered fraction, b) is evaluated. The single-scattering albedo generally increases with RH, while b decreases. The net effect of aerosol hygroscopicity on radiative forcing efficiency (RFE) is an increase in the absolute forcing effect (negative sign) by a factor of up to 4 at RH D 90 % compared to dry conditions (RH < 40 %). Because of the scarcity of scattering enhancement measurements, an attempt was made to use other more commonly available aerosol parameters (i.e., w0 and scattering Ångström exponent, asp) to parameterize f (RH). The majority of sites (75 %) showed a consistent trend with w0 (higher f (RH D 85 %) for higher w0), while no clear pattern was observed between f (RH D 85 %) and asp. This suggests that aerosol w0 is more promising than asp as a surrogate for the scattering enhancement factor, although neither parameter is ideal. Nonetheless, the qualitative relationship observed between w0 and f (RH) could serve as a constraint on global model simulations. © 2021 The Author(s).

Loading...
Thumbnail Image
Item

CALIPSO climatological products: Evaluation and suggestions from EARLINET

2016, Papagiannopoulos, Nikolaos, Mona, Lucia, Alados-Arboledas, Lucas, Amiridis, Vassilis, Baars, Holger, Binietoglou, Ioannis, Bortoli, Daniele, D'Amico, Giuseppe, Giunta, Aldo, Guerrero-Rascado, Juan Luis, Schwarz, Anja, Pereira, Sergio, Spinelli, Nicola, Wandinger, Ulla, Wang, Xuan, Pappalardo, Gelsomina

The CALIPSO Level 3 (CL3) product is the most recent data set produced by the observations of the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud–Aerosol Lidar and Pathfinder Satellite Observations (CALIPSO) space platform. The European Aerosol Research Lidar Network (EARLINET), based mainly on multi-wavelength Raman lidar systems, is the most appropriate ground-based reference for CALIPSO calibration/validation studies on a continental scale. In this work, CALIPSO data are compared against EARLINET monthly averaged profiles obtained by measurements performed during CALIPSO overpasses. In order to mitigate uncertainties due to spatial and temporal differences, we reproduce a modified version of CL3 data starting from CALIPSO Level 2 (CL2) data. The spatial resolution is finer and nearly 2Â°â€¯â€‰Ă—â€‰â€¯2° (latitudeâ€¯â€‰Ă—â€‰â€¯longitude) and only simultaneous measurements are used for ease of comparison. The CALIPSO monthly mean profiles following this approach are called CALIPSO Level 3*, CL3*. We find good agreement on the aerosol extinction coefficient, yet in most of the cases a small CALIPSO underestimation is observed with an average bias of 0.02 km−1 up to 4 km and 0.003 km−1 higher above. In contrast to CL3 standard product, the CL3* data set offers the possibility to assess the CALIPSO performance also in terms of the particle backscatter coefficient keeping the same quality assurance criteria applied to extinction profiles. The mean relative difference in the comparison improved from 25 % for extinction to 18 % for backscatter, showing better performances of CALIPSO backscatter retrievals. Additionally, the aerosol typing comparison yielded a robust identification of dust and polluted dust. Moreover, the CALIPSO aerosol-type-dependent lidar ratio selection is assessed by means of EARLINET observations, so as to investigate the performance of the extinction retrievals. The aerosol types of dust, polluted dust, and clean continental showed noticeable discrepancy. Finally, the potential improvements of the lidar ratio assignment have been examined by adjusting it according to EARLINET-derived values.

Loading...
Thumbnail Image
Item

Profiling of aerosol microphysical properties at several EARLINET/AERONET sites during the July 2012 ChArMEx/EMEP campaign

2016, Granados-Muñoz, MarĂ­a JosĂ©, Navas-GuzmĂ¡n, Francisco, Guerrero-Rascado, Juan Luis, Bravo-Aranda, Juan Antonio, Pereira, Sergio Nepomuceno, Basart, Sara, Baldasano, JosĂ© MarĂ­a, Belegante, Livio, Chaikovsky, Anatoli, ComerĂ³n, Adolfo, D'Amico, Giuseppe, Dubovik, Oleg, Ilic, Luka, Kokkalis, Panos, Muñoz-Porcar, Constantino, Nickovic, Slobodan, Nicolae, Doina, Facchini, Maria Cristina, Olmo, Francisco JosĂ©, Papayannis, Alexander, Pappalardo, Gelsomina, RodrĂ­guez, Alejandro, Schepanski, Kerstin, Sicard, MichaĂ«l, Vukovic, Ana, Wandinger, Ulla, Dulac, François, Alados-Arboledas, Lucas

The simultaneous analysis of aerosol microphysical properties profiles at different European stations is made in the framework of the ChArMEx/EMEP 2012 field campaign (9–11 July 2012). During and in support of this campaign, five lidar ground-based stations (Athens, Barcelona, Bucharest, Évora, and Granada) performed 72 h of continuous lidar measurements and collocated and coincident sun-photometer measurements. Therefore it was possible to retrieve volume concentration profiles with the Lidar Radiometer Inversion Code (LIRIC). Results indicated the presence of a mineral dust plume affecting the western Mediterranean region (mainly the Granada station), whereas a different aerosol plume was observed over the Balkans area. LIRIC profiles showed a predominance of coarse spheroid particles above Granada, as expected for mineral dust, and an aerosol plume composed mainly of fine and coarse spherical particles above Athens and Bucharest. Due to the exceptional characteristics of the ChArMEx database, the analysis of the microphysical properties profiles' temporal evolution was also possible. An in-depth analysis was performed mainly at the Granada station because of the availability of continuous lidar measurements and frequent AERONET inversion retrievals. The analysis at Granada was of special interest since the station was affected by mineral dust during the complete analyzed period. LIRIC was found to be a very useful tool for performing continuous monitoring of mineral dust, allowing for the analysis of the dynamics of the dust event in the vertical and temporal coordinates. Results obtained here illustrate the importance of having collocated and simultaneous advanced lidar and sun-photometer measurements in order to characterize the aerosol microphysical properties in both the vertical and temporal coordinates at a regional scale. In addition, this study revealed that the use of the depolarization information as input in LIRIC in the stations of Bucharest, Évora, and Granada was crucial for the characterization of the aerosol types and their distribution in the vertical column, whereas in stations lacking depolarization lidar channels, ancillary information was needed. Results obtained were also used for the validation of different mineral dust models. In general, the models better forecast the vertical distribution of the mineral dust than the column-integrated mass concentration, which was underestimated in most of the cases.