Search Results

Now showing 1 - 2 of 2
  • Item
    Surface Modified β-Ti-18Mo-6Nb-5Ta (wt%) Alloy for Bone Implant Applications: Composite Characterization and Cytocompatibility Assessment
    (Basel : MDPI, 2023) Escobar, Michael; Careta, Oriol; Fernández Navas, Nora; Bartkowska, Aleksandra; Alberta, Ludovico Andrea; Fornell, Jordina; Solsona, Pau; Gemming, Thomas; Gebert, Annett; Ibáñez, Elena; Blanquer, Andreu; Nogués, Carme; Sort, Jordi; Pellicer, Eva
    Commercially available titanium alloys such as Ti-6Al-4V are established in clinical use as load-bearing bone implant materials. However, concerns about the toxic effects of vanadium and aluminum have prompted the development of Al- and V-free β-Ti alloys. Herein, a new alloy composed of non-toxic elements, namely Ti-18Mo-6Nb-5Ta (wt%), has been fabricated by arc melting. The resulting single β-phase alloy shows improved mechanical properties (Young’s modulus and hardness) and similar corrosion behavior in simulated body fluid when compared with commercial Ti-6Al-4V. To increase the cell proliferation capability of the new biomaterial, the surface of Ti-18Mo-6Nb-5Ta was modified by electrodepositing calcium phosphate (CaP) ceramic layers. Coatings with a Ca/P ratio of 1.47 were obtained at pulse current densities, −jc, of 1.8–8.2 mA/cm2, followed by 48 h of NaOH post-treatment. The thickness of the coatings has been measured by scanning electron microscopy from an ion beam cut, resulting in an average thickness of about 5 μm. Finally, cytocompatibility and cell adhesion have been evaluated using the osteosarcoma cell line Saos-2, demonstrating good biocompatibility and enhanced cell proliferation on the CaP-modified Ti-18Mo-6Nb-5Ta material compared with the bare alloy, even outperforming their CaP-modified Ti-6-Al-4V counterparts.
  • Item
    Designing Gallium-Containing Hydroxyapatite Coatings on Low Modulus Beta Ti-45Nb Alloy
    (Basel : MDPI, 2023) Vishnu, Jithin; Voss, Andrea; Hoffmann, Volker; Alberta, Ludovico Andrea; Akman, Adnan; Shankar, Balakrishnan; Gebert, Annett; Calin, Mariana
    Low-modulus β-type Ti-45Nb alloy is a promising implant material due to its good mechanical biocompatibility, non-toxicity, and outstanding corrosion resistance. Its excellent chemical stability brings new challenges to chemical surface modification treatments, which are indispensable for both osteogenesis and antibacterial performance. Coatings containing metal ions as anti-microbial agents can be an effective way to reduce implant-associated infections caused by bacterial biofilm. Gallium ion (Ga3+) has the potential to reduce bacterial viability and biofilm formation on implant surfaces. In this study, a novel two-step process has been proposed for Ga3+ incorporation in hydroxyapatite (HAP) to develop bioactive and antibacterial surfaces on Ti-45Nb alloy. For the generation of bioactive surface states, HAP electrodeposition was conducted, followed by wet chemical immersion treatments in gallium nitrate (1 mM). Different buffers such as phosphate, sodium bicarbonate, ammonium acetate, and citrate were added to the solution to maintain a pH value in the range of 6.5–6.9. Coating morphology and HAP phases were retained after treatment with gallium nitrate, and Ga3+ ion presence on the surface up to 1 wt.% was confirmed. Combining Ga and HAP shows great promise to enable the local delivery of Ga3+ ions and consequent antibacterial protection during bone regeneration, without using growth factors or antibiotics.