Search Results

Now showing 1 - 2 of 2
  • Item
    Evolution of planar defects during homoepitaxial growth of β-Ga2O3 layers on (100) substrates—A quantitative model
    (Melville, NY : American Inst. of Physics, 2016) Schewski, R.; Baldini, M.; Irmscher, K.; Fiedler, A.; Markurt, T.; Neuschulz, B.; Remmele, T.; Schulz, T.; Wagner, G.; Galazka, Z.; Albrecht, M.
    We study the homoepitaxial growth of β-Ga2O3 (100) grown by metal-organic vapour phase as dependent on miscut-angle vs. the c direction. Atomic force microscopy of layers grown on substrates with miscut-angles smaller than 2° reveals the growth proceeding through nucleation and growth of two-dimensional islands. With increasing miscut-angle, step meandering and finally step flow growth take place. While step-flow growth results in layers with high crystalline perfection, independent nucleation of two-dimensional islands causes double positioning on the (100) plane, resulting in twin lamellae and stacking mismatch boundaries. Applying nucleation theory in the mean field approach for vicinal surfaces, we can fit experimentally found values for the density of twin lamellae in epitaxial layers as dependent on the miscut-angle. The model yields a diffusion coefficient for Ga adatoms of D = 7 × 10−9 cm2 s−1 at a growth temperature of 850 °C, two orders of magnitude lower than the values published for GaAs.
  • Item
    Faceting and metal-exchange catalysis in (010) β-Ga2O3 thin films homoepitaxially grown by plasma-assisted molecular beam epitaxy
    (New York : American Institute of Physics, 2018) Mazzolini, P.; Vogt, P.; Schewski, R.; Wouters, C.; Albrecht, M.; Bierwagen, Oliver
    We here present an experimental study on (010)-oriented -Ga2O3 thin films homoepitaxially grown by plasma assisted molecular beam epitaxy. We study the effect of substrate treatments (i.e., O-plasma and Ga-etching) and several deposition parameters (i.e., growth temperature and metal-to-oxygen flux ratio) on the resulting Ga2O3 surface morphology and growth rate. In situ and ex-situ characterizations identified the formation of (110) and (¯110)-facets on the nominally oriented (010) surface induced by the Ga-etching of the substrate and by several growth conditions, suggesting (110) to be a stable (yet unexplored) substrate orientation. Moreover, we demonstrate how metal-exchange catalysis enabled by an additional In-flux significantly increases the growth rate (>threefold increment) of monoclinic Ga2O3 at high growth temperatures, while maintaining a low surface roughness (rms < 0.5 nm) and preventing the incorporation of In into the deposited layer. This study gives important indications for obtaining device-quality thin films and opens up the possibility to enhance the growth rate in -Ga2O3 homoepitaxy on different surfaces [e.g., (100) and (001)] via molecular beam epitaxy.