Search Results

Now showing 1 - 4 of 4
  • Item
    Suppression of particle formation by gas-phase pre-reactions in (100) MOVPE-grown β -Ga2O3films for vertical device application
    (Melville, NY : American Inst. of Physics, 2023) Chou, Ta-Shun; Seyidov, Palvan; Bin Anooz, Saud; Grüneberg, Raimund; Pietsch, Mike; Rehm, Jana; Tran, Thi Thuy Vi; Tetzner, Kornelius; Galazka, Zbigniew; Albrecht, Martin; Irmscher, Klaus; Fiedler, Andreas; Popp, Andreas
    This work investigated the metalorganic vapor-phase epitaxy (MOVPE) of (100) β-Ga2O3 films with the aim of meeting the requirements to act as drift layers for high-power electronic devices. A height-adjustable showerhead achieving a close distance to the susceptor (1.5 cm) was demonstrated to be a critical factor in increasing the stability of the Ga wetting layer (or Ga adlayer) on the surface and reducing parasitic particles. A film thickness of up to 3 μm has been achieved while keeping the root mean square below 0.7 nm. Record carrier mobilities of 155 cm2 V-1 s-1 (2.2 μm) and 163 cm2 V-1 s-1 (3 μm) at room temperature were measured for (100) β-Ga2O3 films with carrier concentrations of 5.7 × 1016 and 7.1 × 1016 cm-3, respectively. Analysis of temperature-dependent Hall mobility and carrier concentration data revealed a low background compensating acceptor concentration of 4 × 1015 cm-3.
  • Item
    Single-photon emission from isolated monolayer islands of InGaN
    (London : Nature Publishing Group, 2020) Sun, Xiaoxiao; Wang, Ping; Wang, Tao; Chen, Ling; Chen, Zhaoying; Gao, Kang; Aoki, Tomoyuki; Li, Mo; Zhang, Jian; Schulz, Tobias; Albrecht, Martin; Ge, Weikun; Arakawa, Yasuhiko; Shen, Bo; Holmes, Mark; Wang, Xinqiang
    We identify and characterize a novel type of quantum emitter formed from InGaN monolayer islands grown using molecular beam epitaxy and further isolated via the fabrication of an array of nanopillar structures. Detailed optical analysis of the characteristic emission spectrum from the monolayer islands is performed, and the main transmission is shown to act as a bright, stable, and fast single-photon emitter with a wavelength of ~400 nm. © 2020, The Author(s).
  • Item
    Melt Growth and Physical Properties of Bulk LaInO3 Single Crystals
    (Weinheim : Wiley-VCH, 2021) Galazka, Zbigniew; Irmscher, Klaus; Ganschow, Steffen; Zupancic, Martina; Aggoune, Wahib; Draxl, Claudia; Albrecht, Martin; Klimm, Detlef; Kwasniewski, Albert; Schulz, Tobias; Pietsch, Mike; Dittmar, Andrea; Grueneberg, Raimund; Juda, Uta; Schewski, Robert; Bergmann, Sabine; Cho, Hyeongmin; Char, Kookrin; Schroeder, Thomas; Bickermann, Matthias
    Large bulk LaInO3 single crystals are grown from the melt contained within iridium crucibles by the vertical gradient freeze (VGF) method. The obtained crystals are undoped or intentionally doped with Ba or Ce, and enabled wafer fabrication of size 10 × 10 mm2. High melting point of LaInO3 (≈1880 °C) and thermal instability at high temperatures require specific conditions for bulk crystal growth. The crystals do not undergo any phase transition up to 1300 °C, above which a noticeable thermal decomposition takes place. The good structural quality of the crystals makes them suitable for epitaxy. The onset of strong optical absorption shows orientation-dependent behavior due to the orthorhombic symmetry of the LaInO3 crystals. Assuming direct transitions, optical bandgaps of 4.35 and 4.39 eV are obtained for polarizations along the [010] and the [100], [001] crystallographic directions, respectively. There is an additional weak absorption in the range between 2.8 and 4 eV due to oxygen vacancies. Density-functional-theory calculations support the interpretation of the optical absorption data. Cathodoluminescence spectra show a broad, structured emission band peaking at ≈2.2 eV. All bulk crystals are electrically insulating. The relative static dielectric constant is determined at a value of 24.6 along the [001] direction.
  • Item
    Control of phase formation of (AlxGa1 - X)2O3thin films on c-plane Al2O3
    (Bristol : IOP Publ., 2020) Hassa, Anna; Wouters, Charlotte; Kneiß, Max; Splith, Daniel; Sturm, Chris; von Wenckstern, Holger; Albrecht, Martin; Lorenz, Michael; Grundmann, Marius
    In this paper, the growth of orthorhombic and monoclinic (Al x Ga1 - x )2O3 thin films on (00.1) Al2O3 by tin-assisted pulsed laser deposition is investigated as a function of oxygen pressure p(O2) and substrate temperature Tg. For certain growth conditions, defined by Tg = 580°C and p(O2) = 0.016 mbar, the orthorhombic ?-polymorph is stabilized. For Tg = 540°C and p(O2) = 0.016 mbar, the ?-, and the ß-, as well as the spinel ?-polymorph coexist, as illustrated by XRD 2?-?-scans. Further employed growth parameters result in thin films with a monoclinic ß-gallia structure. For all polymorphs, p(O2) and Tg affect the formation and desorption of volatile suboxides, and thereby the growth rate and the cation composition. For example, low oxygen pressures lead to low growth rates and enhanced Al incorporation. This facilitates the structural engineering of polymorphic, ternary (Al,Ga)2O3 via selection of the relevant process parameters. Transmission electron microscopy (TEM) studies of a ? - (Al0.13Ga0.87)2O3 thin film reveal a more complex picture compared to that derived from x-ray diffraction measurements. Furthermore, this study presents the possibility of controlling the phase formation, as well as the Al-content, of thin films based on the choice of their growth conditions. © 2020 The Author(s). Published by IOP Publishing Ltd.