Search Results

Now showing 1 - 2 of 2
  • Item
    Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds
    (Katlenburg-Lindau : European Geosciences Union, 2021) Tilgner, Andreas; Schaefer, Thomas; Alexander, Becky; Barth, Mary; Collett, Jeffrey L.; Fahey, Kathleen M.; Nenes, Athanasios; Pye, Havala O.T.; Herrmann, Hartmut; McNeill, V. Faye
    The acidity of aqueous atmospheric solutions is a key parameter driving both the partitioning of semi-volatile acidic and basic trace gases and their aqueous-phase chemistry. In addition, the acidity of atmospheric aqueous phases, e.g., deliquesced aerosol particles, cloud, and fog droplets, is also dictated by aqueous-phase chemistry. These feedbacks between acidity and chemistry have crucial implications for the tropospheric lifetime of air pollutants, atmospheric composition, deposition to terrestrial and oceanic ecosystems, visibility, climate, and human health. Atmospheric research has made substantial progress in understanding feedbacks between acidity and multiphase chemistry during recent decades. This paper reviews the current state of knowledge on these feedbacks with a focus on aerosol and cloud systems, which involve both inorganic and organic aqueous-phase chemistry. Here, we describe the impacts of acidity on the phase partitioning of acidic and basic gases and buffering phenomena. Next, we review feedbacks of different acidity regimes on key chemical reaction mechanisms and kinetics, as well as uncertainties and chemical subsystems with incomplete information. Finally, we discuss atmospheric implications and highlight the need for future investigations, particularly with respect to reducing emissions of key acid precursors in a changing world, and the need for advancements in field and laboratory measurements and model tools.
  • Item
    The acidity of atmospheric particles and clouds
    (Katlenburg-Lindau : EGU, 2020) Pye, Havala O.T.; Nenes, Athanasios; Alexander, Becky; Ault, Andrew P.; Barth, Mary C.; Clegg, Simon L.; Collett Jr, Jeffrey L.; Fahey, Kathleen M.; Hennigan, Christopher J.; Herrmann, Hartmut; Kanakidou, Maria; Kelly, James T.; Ku, I-Ting; McNeill, V. Faye; Riemer, Nicole; Schaefer, Thomas; Shi, Guoliang; Tilgner, Andreas; Walker, John T.; Wang, Tao; Weber, Rodney; Xing, Jia; Zaveri, Rahul A.; Zuend, Andreas
    Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semivolatile gases such as HNO3, NH3, HCl, and organic acids and bases as well as chemical reaction rates. It has implications for the atmospheric lifetime of pollutants, deposition, and human health. Despite its fundamental role in atmospheric processes, only recently has this field seen a growth in the number of studies on particle acidity. Even with this growth, many fine-particle pH estimates must be based on thermodynamic model calculations since no operational techniques exist for direct measurements. Current information indicates acidic fine particles are ubiquitous, but observationally constrained pH estimates are limited in spatial and temporal coverage. Clouds and fogs are also generally acidic, but to a lesser degree than particles, and have a range of pH that is quite sensitive to anthropogenic emissions of sulfur and nitrogen oxides, as well as ambient ammonia. Historical measurements indicate that cloud and fog droplet pH has changed in recent decades in response to controls on anthropogenic emissions, while the limited trend data for aerosol particles indicate acidity may be relatively constant due to the semivolatile nature of the key acids and bases and buffering in particles. This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets. It includes recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale. © 2020 Author(s).