Search Results

Now showing 1 - 4 of 4
  • Item
    Enhanced thermal stability of yttrium oxide-based RRAM devices with inhomogeneous Schottky-barrier
    (Melville, NY : American Inst. of Physics, 2020) Piros, Eszter; Petzold, Stefan; Zintler, Alexander; Kaiser, Nico; Vogel, Tobias; Eilhardt, Robert; Wenger, Christian; Molina-Luna, Leopoldo; Alff, Lambert
    This work addresses the thermal stability of bipolar resistive switching in yttrium oxide-based resistive random access memory revealed through the temperature dependence of the DC switching behavior. The operation voltages, current levels, and charge transport mechanisms are investigated at 25 °C, 85 °C, and 125 °C, and show overall good temperature immunity. The set and reset voltages, as well as the device resistance in both the high and low resistive states, are found to scale inversely with increasing temperatures. The Schottky-barrier height was observed to increase from approximately 1.02 eV at 25 °C to approximately 1.35 eV at 125 °C, an uncommon behavior explained by interface phenomena. © 2020 Author(s).
  • Item
    Operando diagnostic detection of interfacial oxygen ‘breathing’ of resistive random access memory by bulk-sensitive hard X-ray photoelectron spectroscopy
    (London [u.a.] : Taylor & Francis, 2019) Niu, Gang; Calka, Pauline; Huang, Peng; Sharath, Sankaramangalam Ulhas; Petzold, Stefan; Gloskovskii, Andrei; Fröhlich, Karol; Zhao, Yudi; Kan, Jinfeng; Schubert, Markus Andreas; Bärwolf, Florian; Ren, Wei; Ye, Zuo-Guang; Perez, Eduardo; Wenger, Christian; Alff, Lambert; Schroeder, Thomas
    The HfO2-based resistive random access memory (RRAM) is one of the most promising candidates for non-volatile memory applications. The detection and examination of the dynamic behavior of oxygen ions/vacancies are crucial to deeply understand the microscopic physical nature of the resistive switching (RS) behavior. By using synchrotron radiation based, non-destructive and bulk-sensitive hard X-ray photoelectron spectroscopy (HAXPES), we demonstrate an operando diagnostic detection of the oxygen ‘breathing’ behavior at the oxide/metal interface, namely, oxygen migration between HfO2 and TiN during different RS periods. The results highlight the significance of oxide/metal interfaces in RRAM, even in filament-type devices. IMPACT STATEMENT: The oxygen ‘breathing’ behavior at the oxide/metal interface of filament-type resistive random access memory devices is operandoly detected using hard X-ray photoelectron spectroscopy as a diagnostic tool. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    Role of Oxygen Defects in Conductive-Filament Formation in Y2O3-Based Analog RRAM Devices as Revealed by Fluctuation Spectroscopy
    (College Park, Md. [u.a.] : American Physical Society, 2020) Piros, Eszter; Lonsky, Martin; Petzold, Stefan; Zintler, Alexander; Sharath, S.U.; Vogel, Tobias; Kaiser, Nico; Eilhardt, Robert; Molina-Luna, Leopoldo; Wenger, Christian; Müller, Jens; Alff, Lambert
    Low-frequency noise in Y2O3-based resistive random-access memory devices with analog switching is studied at intermediate resistive states and as a function of dc cycling. A universal 1/fα-type behavior is found, with a frequency exponent of α≈1.2 that is independent of the applied reset voltage or the device resistance and is attributed to the intrinsic abundance of oxygen vacancies unique to the structure of yttria. Remarkably, the noise magnitude in the high resistive state systematically decreases through dc training. This effect is attributed to the stabilization of the conductive filament via the consumption of oxygen vacancies, thus reducing the number of active fluctuators in the vicinity of the filament.
  • Item
    Geometric conductive filament confinement by nanotips for resistive switching of HfO2-RRAM devices with high performance
    (London : Nature Publishing Group, 2016) Niu, Gang; Calka, Pauline; Auf der Maur, Matthias; Santoni, Francesco; Guha, Subhajit; Fraschke, Mirko; Hamoumou, Philippe; Gautier, Brice; Perez, Eduardo; Walczyk, Christian; Wenger, Christian; Di Carlo, Aldo; Alff, Lambert; Schroeder, Thomas
    Filament-type HfO2-based RRAM has been considered as one of the most promising candidates for future non-volatile memories. Further improvement of the stability, particularly at the “OFF” state, of such devices is mainly hindered by resistance variation induced by the uncontrolled oxygen vacancies distribution and filament growth in HfO2 films. We report highly stable endurance of TiN/Ti/HfO2/Si-tip RRAM devices using a CMOS compatible nanotip method. Simulations indicate that the nanotip bottom electrode provides a local confinement for the electrical field and ionic current density; thus a nano-confinement for the oxygen vacancy distribution and nano-filament location is created by this approach. Conductive atomic force microscopy measurements confirm that the filaments form only on the nanotip region. Resistance switching by using pulses shows highly stable endurance for both ON and OFF modes, thanks to the geometric confinement of the conductive path and filament only above the nanotip. This nano-engineering approach opens a new pathway to realize forming-free RRAM devices with improved stability and reliability.