Search Results

Now showing 1 - 6 of 6
  • Item
    Vibrations of a laboratory-scale gas-stirred ladle with two eccentric nozzles and multiple sensors
    ([Singapore] : Springer Singapore, 2019) Alia, Najib; Pylvänäinen, Mika; Visuri, Ville-Valtteri; John, Volker; Ollila, Seppo
    During ladle stirring, a gas is injected into the steel bath to generate a mixing of the liquid steel. The optimal process control requires a reliable measurement of the stirring intensity, for which the induced ladle wall vibrations have proved to be a potential indicator. An experimental cold water ladle with two eccentric nozzles and eight mono-axial accelerometers was thus investigated to measure the vibrations. The effect of the sensors’ positions with respect to the gas plugs on the vibration intensity was analyzed, and experimental data on several points of the ladle were collected for future numerical simulations. It is shown that the vibration root-mean-square values depend not only on process parameters, such as gas flow rate, water, and oil heights, but also on the radial and axial positions of the sensors. The vibration intensity is clearly higher, close to the gas plumes, than in the opposite side. If one of the nozzles is clogged, the vibration intensity close to the clogged nozzle drops drastically (−36 to −59%), while the vibrations close to the normal operating nozzle are hardly affected. Based on these results, guidelines are provided for an optimized vibration-based stirring.
  • Item
    Optimal control of buoyancy-driven liquid steel stirring modeled with single-phase Navier–Stokes equations
    (Berlin ; Heidelberg : Springer, 2021) Wilbrandt, Ulrich; Alia, Najib; John, Volker
    Gas stirring is an important process used in secondary metallurgy. It allows to homogenize the temperature and the chemical composition of the liquid steel and to remove inclusions which can be detrimental for the end-product quality. In this process, argon gas is injected from two nozzles at the bottom of the vessel and rises by buoyancy through the liquid steel thereby causing stirring, i.e., a mixing of the bath. The gas flow rates and the positions of the nozzles are two important control parameters in practice. A continuous optimization approach is pursued to find optimal values for these control variables. The effect of the gas appears as a volume force in the single-phase incompressible Navier–Stokes equations. Turbulence is modeled with the Smagorinsky Large Eddy Simulation (LES) model. An objective functional based on the vorticity is used to describe the mixing in the liquid bath. Optimized configurations are compared with a default one whose design is based on a setup from industrial practice.
  • Item
    On the feasibility of using open source solvers for the simulation of a turbulent air flow in a dairy barn
    (Amsterdam [u.a.] : Elsevier, 2020) Janke, David; Caiazzo, Alfonso; Ahmed, Naveed; Alia, Najib; Knoth, Oswald; Moreau, Baptiste; Wilbrandt, Ulrich; Willink, Dilya; Amon, Thomas; John, Volker
    Two transient open source solvers, OpenFOAM and ParMooN, and the commercial solver Ansys Fluent are assessed with respect to the simulation of the turbulent air flow inside and around a dairy barn. For this purpose, data were obtained in an experimental campaign at a 1:100 scaled wind tunnel model. All solvers used different meshes, discretization schemes, and turbulence models. The experimental data and numerical results agree well for time-averaged stream-wise and vertical-wise velocities. In particular, the air exchange was predicted with high accuracy by both open source solvers with relative differences less than 4% and by the commercial solver with a relative difference of 9% compared to the experimental results. With respect to the turbulent quantities, good agreements at the second (downwind) half of the barn inside and especially outside the barn could be achieved, where all codes accurately predicted the flow separation and, in many cases, the root-mean-square velocities. Deviations between simulations and experimental results regarding turbulent quantities could be observed in the first part of the barn. These deviations can be attributed to the utilization of roughness elements between inlet and barn in the experiment that were not modeled in the numerical simulations. Both open source solvers proved to be promising tools for the accurate prediction of time-dependent phenomena in an agricultural context, e.g., like the transport of particulate matter or pathogen-laden aerosols in and around agricultural buildings. © 2020 The Authors
  • Item
    ParMooN - a modernized program package based on mapped finite elements
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Wilbrandt, Ulrich; Bartsch, Clemens; Ahmed, Naveed; Alia, Najib; Anker, Felix; Blank, Laura; Caiazzo, Alfonso; Ganesa, Sashikumaar; Giere, Swetlana; Matthies, Gunar; Meesala, Raviteja; Shamim, Abdus; Venkatesan, Jagannath; John, Volker
    PARMOON is a program package for the numerical solution of elliptic and parabolic partial differential equations. It inherits the distinct features of its predecessor MOONMD [28]: strict decoupling of geometry and finite element spaces, implementation of mapped finite elements as their definition can be found in textbooks, and a geometric multigrid preconditioner with the option to use different finite element spaces on different levels of the multigrid hierarchy. After having presented some thoughts about in-house research codes, this paper focuses on aspects of the parallelization, which is the main novelty of PARMOON. Numerical studies, performed on compute servers, assess the efficiency of the parallelized geometric multigrid preconditioner in comparison with parallel solvers that are available in external libraries. The results of these studies give a first indication whether the cumbersome implementation of the parallelized geometric multigrid method was worthwhile or not.
  • Item
    Optimal control of a buoyancy-driven liquid steel stirring modeled with single-phase Navier--Stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Wilbrandt, Ulrich; Alia, Najib; John, Volker
    Gas stirring is an important process used in secondary metallurgy. It allows to homogenize the temperature and the chemical composition of the liquid steel and to remove inclusions which can be detrimental for the end-product quality. In this process, argon gas is injected from two nozzles at the bottom of the vessel and rises by buoyancy through the liquid steel thereby causing stirring, i.e., a mixing of the bath. The gas flow rates and the positions of the nozzles are two important control parameters in practice. A continuous optimization approach is pursued to find optimal values for these control variables. The effect of the gas appears as a volume force in the single-phase incompressible NavierStokes equations. Turbulence is modeled with the Smagorinsky Large Eddy Simulation (LES) model. An objective functional based on the vorticity is used to describe the mixing in the liquid bath. Optimized configurations are compared with a default one whose design is based on a setup from industrial practice.
  • Item
    On the feasibility of using open source solvers for the simulation of a turbulent air flow in a dairy barn
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Janke, David; Caiazzo, Alfonso; Ahmed, Naveed; Alia, Najib; Knoth, Oswald; Moreau, Baptiste; Wilbrandt, Ulrich; Willink, Dilya; Amon, Thomas; John, Volker
    Two transient open source solvers, OpenFOAM and ParMooN, are assessed with respect to the simulation of the turbulent air flow inside and around a dairy barn. For this purpose, data were obtained in an experimental campaign at a 1:100 scaled wind tunnel model. Both solvers used different meshes, discretization schemes, and turbulence models. The experimental data and numerical results agree well for time-averaged stream-wise and vertical-wise velocities. In particular, the air exchange was predicted with high accuracy by both solvers with relative errors less than 5 % compared to the experimental results. With respect to the turbulent quantities, good agreements at the second (downwind) half of the barn inside and especially outside the barn could be achieved, where both codes accurately predicted the flow separation and the root-mean-square velocities. Deviations between simulations and experimental results regarding turbulent quantities could be observed in the first part of the barn, due to different inlet conditions between the experimental setup and the numerical simulations. Both solvers proved to be promising tools for the accurate prediction of time-dependent phenomena in an agricultural context, e.g., like the transport of particulate matter or pathogen-laden aerosols in and around agricultural buildings.