Search Results

Now showing 1 - 6 of 6
  • Item
    Dust mass, cloud condensation nuclei, and ice-nucleating particle profiling with polarization lidar: Updated POLIPHON conversion factors from global AERONET analysis
    (Göttingen : Copernicus GmbH, 2019) Ansmann, A.; Mamouri, R.-E.; Hofer, J.; Baars, H.; Althausen, D.; Abdullaev, S.F.
    The POLIPHON (Polarization Lidar Photometer Networking) method permits the retrieval of particle number, surface area, and volume concentration for dust and non-dust aerosol components. The obtained microphysical properties are used to estimate height profiles of particle mass, cloud condensation nucleus (CCN) and ice-nucleating particle (INP) concentrations. The conversion of aerosol-type-dependent particle extinction coefficients, derived from polarization lidar observations, into the aerosol microphysical properties (number, surface area, volume) forms the central part of the POLIPHON computations. The conversion parameters are determined from Aerosol Robotic Network (AERONET) aerosol climatologies of optical and microphysical properties. In this article, we focus on the dust-related POLIPHON retrieval products and present an extended set of dust conversion factors considering all relevant deserts around the globe. We apply the new conversion factor set to a dust measurement with polarization lidar in Dushanbe, Tajikistan, in central Asia. Strong aerosol layering was observed with mineral dust advected from Kazakhstan (0-2km height), Iran (2-5km), the Arabian peninsula (5-7km), and the Sahara (8-10km). POLIPHON results obtained with different sets of conversion parameters were contrasted in this central Asian case study and permitted an estimation of the conversion uncertainties.
  • Item
    An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08)
    (München : European Geopyhsical Union, 2010) Martin, S.T.; Andreae, M.O.; Althausen, D.; Artaxo, P.; Baars, H.; Borrmann, S.; Chen, Q.; Farmer, D.K.; Guenther, A.; Gunthe, S.S.; Jimenez, J.L.; Karl, T.; Longo, K.; Manzi, A.; Müller, T.; Pauliquevis, T.; Petters, M.D.; Prenni, A.J.; Pöschl, U.; Rizzo, L.V.; Schneider, J.; Smith, J.N.; Swietlicki, E.; Tota, J.; Wang, J.; Wiedensohler, A.; Zorn, S.R.
    The Amazon Basin provides an excellent environment for studying the sources, transformations, and properties of natural aerosol particles and the resulting links between biological processes and climate. With this framework in mind, the Amazonian Aerosol Characterization Experiment (AMAZE-08), carried out from 7 February to 14 March 2008 during the wet season in the central Amazon Basin, sought to understand the formation, transformations, and cloud-forming properties of fine- and coarse-mode biogenic aerosol particles, especially as related to their effects on cloud activation and regional climate. Special foci included (1) the production mechanisms of secondary organic components at a pristine continental site, including the factors regulating their temporal variability, and (2) predicting and understanding the cloud-forming properties of biogenic particles at such a site. In this overview paper, the field site and the instrumentation employed during the campaign are introduced. Observations and findings are reported, including the large-scale context for the campaign, especially as provided by satellite observations. New findings presented include: (i) a particle number-diameter distribution from 10 nm to 10 μm that is representative of the pristine tropical rain forest and recommended for model use; (ii) the absence of substantial quantities of primary biological particles in the submicron mode as evidenced by mass spectral characterization; (iii) the large-scale production of secondary organic material; (iv) insights into the chemical and physical properties of the particles as revealed by thermodenuder-induced changes in the particle number-diameter distributions and mass spectra; and (v) comparisons of ground-based predictions and satellite-based observations of hydrometeor phase in clouds. A main finding of AMAZE-08 is the dominance of secondary organic material as particle components. The results presented here provide mechanistic insight and quantitative parameters that can serve to increase the accuracy of models of the formation, transformations, and cloud-forming properties of biogenic natural aerosol particles, especially as related to their effects on cloud activation and regional climate.
  • Item
    Technical Note: One year of Raman-lidar measurements in Gual Pahari EUCAARI site close to New Delhi in India – Seasonal characteristics of the aerosol vertical structure
    (München : European Geopyhsical Union, 2012) Komppula, M.; Mielonen, T.; Arola, A.; Korhonen, K.; Lihavainen, H.; Hyvärinen, A.-P.; Baars, H.; Engelmann, R.; Althausen, D.; Ansmann, A.; Müller, D.; Panwar, T.S.; Hooda, R.K.; Sharma, V.P.; Kerminen, V.-M.; Lehtinen, K.E.J.; Viisanen, Y.
    One year of multi-wavelength (3 backscatter + 2 extinction + 1 depolarization) Raman lidar measurements at Gual Pahari, close to New Delhi, were analysed. The data was split into four seasons: spring (March–May), summer (June–August), autumn (September–November) and winter (December–February). The vertical profiles of backscatter, extinction, and lidar ratio and their variability during each season are presented. The measurements revealed that, on average, the aerosol layer was at its highest in spring (5.5 km). In summer, the vertically averaged (between 1–3 km) backscatter and extinction coefficients had the highest averages (3.3 Mm−1 sr−1 and 142 Mm−1 at 532 nm, respectively). Aerosol concentrations were slightly higher in summer compared to other seasons, and particles were larger in size. The autumn showed the highest lidar ratio and high extinction-related Ångström exponents (AEext), indicating the presence of smaller probably absorbing particles. The winter had the lowest backscatter and extinction coefficients, but AEext was the highest, suggesting still a large amount of small particles.
  • Item
    Surface matters: Limitations of CALIPSO V3 aerosol typing in coastal regions
    (München : European Geopyhsical Union, 2014) Kanitz, T.; Ansmann, A.; Foth, A.; Seifert, P.; Wandinger, U.; Engelmann, R.; Baars, H.; Althausen, D.; Casiccia, C.; Zamorano, F.
    In the CALIPSO data analysis, surface type (land/ocean) is used to augment the aerosol characterization. However, this surface-dependent aerosol typing prohibits a correct classification of marine aerosol over land that is advected from ocean to land. This might result in a systematic overestimation of the particle extinction coefficient and of the aerosol optical thickness (AOT) of up to a factor of 3.5 over land in coastal areas. We present a long-term comparison of CALIPSO and ground-based lidar observations of the aerosol conditions in the coastal environment of southern South America (Punta Arenas, Chile, 53° S), performed in December 2009–April 2010. Punta Arenas is almost entirely influenced by marine particles throughout the year, indicated by a rather low AOT of 0.02–0.04. However, we found an unexpectedly high fraction of continental aerosol in the aerosol types inferred by means of CALIOP observations and, correspondingly, too high values of particle extinction. Similar features of the CALIOP data analysis are presented for four other coastal areas around the world. Since CALIOP data serve as important input for global climate models, the influence of this systematic error was estimated by means of simplified radiative-transfer calculations.
  • Item
    Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke
    (Göttingen : Copernicus GmbH, 2018) Haarig, M.; Ansmann, A.; Baars, H.; Jimenez, C.; Veselovskii, I.; Engelmann, R.; Althausen, D.
    We present spectrally resolved optical and microphysical properties of western Canadian wildfire smoke observed in a tropospheric layer from 5-6.5 km height and in a stratospheric layer from 15-16 km height during a recordbreaking smoke event on 22 August 2017. Three polarization/ Raman lidars were run at the European Aerosol Research Lidar Network (EARLINET) station of Leipzig, Germany, after sunset on 22 August. For the first time, the linear depolarization ratio and extinction-to-backscatter ratio (lidar ratio) of aged smoke particles were measured at all three important lidar wavelengths of 355, 532, and 1064 nm. Very different particle depolarization ratios were found in the troposphere and in the stratosphere. The obviously compact and spherical tropospheric smoke particles caused almost no depolarization of backscattered laser radiation at all three wavelengths ( < 3 %), whereas the dry irregularly shaped soot particles in the stratosphere lead to high depolarization ratios of 22% at 355 nm and 18% at 532 nm and a comparably low value of 4% at 1064 nm. The lidar ratios were 40- 45 sr (355 nm), 65-80 sr (532 nm), and 80-95 sr (1064 nm) in both the tropospheric and stratospheric smoke layers indicating similar scattering and absorption properties. The strong wavelength dependence of the stratospheric depolarization ratio was probably caused by the absence of a particle coarse mode (particle mode consisting of particles with radius > 500nm). The stratospheric smoke particles formed a pronounced accumulation mode (in terms of particle volume or mass) centered at a particle radius of 350-400 nm. The effective particle radius was 0.32 μm. The tropospheric smoke particles were much smaller (effective radius of 0.17 μm). Mass concentrations were of the order of 5.5 μgm-3 (tropospheric layer) and 40 μgm-3 (stratospheric layer) in the night of 22 August 2017. The single scattering albedo of the stratospheric particles was estimated to be 0.74, 0.8, and 0.83 at 355, 532, and 1064 nm, respectively.
  • Item
    Continuous monitoring of the boundary-layer top with lidar
    (München : European Geopyhsical Union, 2008) Baars, H.; Ansmann, A.; Engelmann, R.; Althausen, D.
    Continuous lidar observations of the top height of the boundary layer (BL top) have been performed at Leipzig (51.3° N, 12.4° E), Germany, since August 2005. The results of measurements taken with a compact, automated Raman lidar over a one–year period (February 2006 to January 2007) are presented. Main goals of the study are (a) to demonstrate that BL top monitoring with lidar throughout the year is possible, (b) to present the required data analysis method that permits an automated, robust retrieval of BL top at all weather situations, and (c) to use this opportunity to compare the lidar-derived BL top data with respective BL tops hourly predicted by the regional weather forecast model COSMO. Four different lidar methods for the determination of the BL top are discussed. The wavelet covariance algorithm is modified so that an automated retrieval of BL depths from lidar data is possible. Three case studies of simultaneous observations with the Raman lidar, a vertical-wind Doppler lidar, and accompanying radiosonde profiling of temperature and humidity are presented to compare the potential and the limits of the four lidar techniques. The statistical analysis of the one-year data set reveals that the seasonal mean of the daytime (about 08:00–20:00 Local Time, LT) maximum BL top is 1400 m in spring, 1800 m in summer, 1200 m in autumn, and 800 m in winter at the continental, central European site. BL top typically increases by 100–300 m per hour in the morning of convective days. The comparison between the lidar-derived BL top heights and the predictions of COSMO yields a general underestimation of the BL top by about 20% by the model.