Search Results

Now showing 1 - 10 of 14
  • Item
    Dust mass, cloud condensation nuclei, and ice-nucleating particle profiling with polarization lidar: Updated POLIPHON conversion factors from global AERONET analysis
    (Göttingen : Copernicus GmbH, 2019) Ansmann, A.; Mamouri, R.-E.; Hofer, J.; Baars, H.; Althausen, D.; Abdullaev, S.F.
    The POLIPHON (Polarization Lidar Photometer Networking) method permits the retrieval of particle number, surface area, and volume concentration for dust and non-dust aerosol components. The obtained microphysical properties are used to estimate height profiles of particle mass, cloud condensation nucleus (CCN) and ice-nucleating particle (INP) concentrations. The conversion of aerosol-type-dependent particle extinction coefficients, derived from polarization lidar observations, into the aerosol microphysical properties (number, surface area, volume) forms the central part of the POLIPHON computations. The conversion parameters are determined from Aerosol Robotic Network (AERONET) aerosol climatologies of optical and microphysical properties. In this article, we focus on the dust-related POLIPHON retrieval products and present an extended set of dust conversion factors considering all relevant deserts around the globe. We apply the new conversion factor set to a dust measurement with polarization lidar in Dushanbe, Tajikistan, in central Asia. Strong aerosol layering was observed with mineral dust advected from Kazakhstan (0-2km height), Iran (2-5km), the Arabian peninsula (5-7km), and the Sahara (8-10km). POLIPHON results obtained with different sets of conversion parameters were contrasted in this central Asian case study and permitted an estimation of the conversion uncertainties.
  • Item
    A case of extreme particulate matter concentrations over Central Europe caused by dust emitted over the southern Ukraine
    (München : European Geopyhsical Union, 2008) Birmili, W.; Schepanski, K.; Ansmann, A.; Spindler, G.; Tegen, I.; Wehner, B.; Nowak, A.; Reimer, E.; Mattis, I.; Müller, K.; Brüggemann, E.; Gnauk, T.; Herrmann, H.; Wiedensohler, A.; Althausen, D.; Schladitz, A.; Tuch, T.; Löschau, G.
    On 24 March 2007, an extraordinary dust plume was observed in the Central European troposphere. Satellite observations revealed its origins in a dust storm in Southern Ukraine, where large amounts of soil were resuspended from dried-out farmlands at wind gusts up to 30 m s−1. Along the pathway of the plume, maximum particulate matter (PM10) mass concentrations between 200 and 1400 μg m−3 occurred in Slovakia, the Czech Republic, Poland, and Germany. Over Germany, the dust plume was characterised by a volume extinction coefficient up to 400 Mm−1 and a particle optical depth of 0.71 at wavelength 0.532 μm. In-situ size distribution measurements as well as the wavelength dependence of light extinction from lidar and Sun photometer measurements confirmed the presence of a coarse particle mode with diameters around 2–3 μm. Chemical particle analyses suggested a fraction of 75% crustal material in daily average PM10 and up to 85% in the coarser fraction PM10–2.5. Based on the particle characteristics as well as a lack of increased CO and CO2 levels, a significant impact of biomass burning was ruled out. The reasons for the high particle concentrations in the dust plume were twofold: First, dust was transported very rapidly into Central Europe in a boundary layer jet under dry conditions. Second, the dust plume was confined to a relatively stable boundary layer of 1.4–1.8 km height, and could therefore neither expand nor dilute efficiently. Our findings illustrate the capacity of combined in situ and remote sensing measurements to characterise large-scale dust plumes with a variety of aerosol parameters. Although such plumes from Southern Eurasia seem to occur rather infrequently in Central Europe, its unexpected features highlights the need to improve the description of dust emission, transport and transformation processes needs, particularly when facing the possible effects of further anthropogenic desertification and climate change.
  • Item
    An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08)
    (München : European Geopyhsical Union, 2010) Martin, S.T.; Andreae, M.O.; Althausen, D.; Artaxo, P.; Baars, H.; Borrmann, S.; Chen, Q.; Farmer, D.K.; Guenther, A.; Gunthe, S.S.; Jimenez, J.L.; Karl, T.; Longo, K.; Manzi, A.; Müller, T.; Pauliquevis, T.; Petters, M.D.; Prenni, A.J.; Pöschl, U.; Rizzo, L.V.; Schneider, J.; Smith, J.N.; Swietlicki, E.; Tota, J.; Wang, J.; Wiedensohler, A.; Zorn, S.R.
    The Amazon Basin provides an excellent environment for studying the sources, transformations, and properties of natural aerosol particles and the resulting links between biological processes and climate. With this framework in mind, the Amazonian Aerosol Characterization Experiment (AMAZE-08), carried out from 7 February to 14 March 2008 during the wet season in the central Amazon Basin, sought to understand the formation, transformations, and cloud-forming properties of fine- and coarse-mode biogenic aerosol particles, especially as related to their effects on cloud activation and regional climate. Special foci included (1) the production mechanisms of secondary organic components at a pristine continental site, including the factors regulating their temporal variability, and (2) predicting and understanding the cloud-forming properties of biogenic particles at such a site. In this overview paper, the field site and the instrumentation employed during the campaign are introduced. Observations and findings are reported, including the large-scale context for the campaign, especially as provided by satellite observations. New findings presented include: (i) a particle number-diameter distribution from 10 nm to 10 μm that is representative of the pristine tropical rain forest and recommended for model use; (ii) the absence of substantial quantities of primary biological particles in the submicron mode as evidenced by mass spectral characterization; (iii) the large-scale production of secondary organic material; (iv) insights into the chemical and physical properties of the particles as revealed by thermodenuder-induced changes in the particle number-diameter distributions and mass spectra; and (v) comparisons of ground-based predictions and satellite-based observations of hydrometeor phase in clouds. A main finding of AMAZE-08 is the dominance of secondary organic material as particle components. The results presented here provide mechanistic insight and quantitative parameters that can serve to increase the accuracy of models of the formation, transformations, and cloud-forming properties of biogenic natural aerosol particles, especially as related to their effects on cloud activation and regional climate.
  • Item
    Technical Note: One year of Raman-lidar measurements in Gual Pahari EUCAARI site close to New Delhi in India – Seasonal characteristics of the aerosol vertical structure
    (München : European Geopyhsical Union, 2012) Komppula, M.; Mielonen, T.; Arola, A.; Korhonen, K.; Lihavainen, H.; Hyvärinen, A.-P.; Baars, H.; Engelmann, R.; Althausen, D.; Ansmann, A.; Müller, D.; Panwar, T.S.; Hooda, R.K.; Sharma, V.P.; Kerminen, V.-M.; Lehtinen, K.E.J.; Viisanen, Y.
    One year of multi-wavelength (3 backscatter + 2 extinction + 1 depolarization) Raman lidar measurements at Gual Pahari, close to New Delhi, were analysed. The data was split into four seasons: spring (March–May), summer (June–August), autumn (September–November) and winter (December–February). The vertical profiles of backscatter, extinction, and lidar ratio and their variability during each season are presented. The measurements revealed that, on average, the aerosol layer was at its highest in spring (5.5 km). In summer, the vertically averaged (between 1–3 km) backscatter and extinction coefficients had the highest averages (3.3 Mm−1 sr−1 and 142 Mm−1 at 532 nm, respectively). Aerosol concentrations were slightly higher in summer compared to other seasons, and particles were larger in size. The autumn showed the highest lidar ratio and high extinction-related Ångström exponents (AEext), indicating the presence of smaller probably absorbing particles. The winter had the lowest backscatter and extinction coefficients, but AEext was the highest, suggesting still a large amount of small particles.
  • Item
    Adaption of the MODIS aerosol retrieval algorithm using airborne spectral surface reflectance measurements over urban areas: A case study
    (München : European Geopyhsical Union, 2015) Jäkel, E.; Mey, B.; Levy, R.; Gu, X.; Yu, T.; Li, Z.; Althausen, D.; Heese, B.; Wendisch, M.
    MODIS (MOderate-resolution Imaging Spectroradiometer) retrievals of aerosol optical depth (AOD) are biased over urban areas, primarily because the reflectance characteristics of urban surfaces are different than that assumed by the retrieval algorithm. Specifically, the operational "dark-target" retrieval is tuned towards vegetated (dark) surfaces and assumes a spectral relationship to estimate the surface reflectance in blue and red wavelengths. From airborne measurements of surface reflectance over the city of Zhongshan, China, were collected that could replace the assumptions within the MODIS retrieval algorithm. The subsequent impact was tested upon two versions of the operational algorithm, Collections 5 and 6 (C5 and C6). AOD retrieval results of the operational and modified algorithms were compared for a specific case study over Zhongshan to show minor differences between them all. However, the Zhongshan-based spectral surface relationship was applied to a much larger urban sample, specifically to the MODIS data taken over Beijing between 2010 and 2014. These results were compared directly to ground-based AERONET (AErosol RObotic NETwork) measurements of AOD. A significant reduction of the differences between the AOD retrieved by the modified algorithms and AERONET was found, whereby the mean difference decreased from 0.27±0.14 for the operational C5 and 0.19±0.12 for the operational C6 to 0.10±0.15 and -0.02±0.17 by using the modified C5 and C6 retrievals. Since the modified algorithms assume a higher contribution by the surface to the total measured reflectance from MODIS, consequently the overestimation of AOD by the operational methods is reduced. Furthermore, the sensitivity of the MODIS AOD retrieval with respect to different surface types was investigated. Radiative transfer simulations were performed to model reflectances at top of atmosphere for predefined aerosol properties. The reflectance data were used as input for the retrieval methods. It was shown that the operational MODIS AOD retrieval over land reproduces the AOD reference input of 0.85 for dark surface types (retrieved AOD = 0.87 (C5)). An overestimation of AOD = 0.99 is found for urban surfaces, whereas the modified C5 algorithm shows a good performance with a retrieved value of AOD = 0.86.
  • Item
    Surface matters: Limitations of CALIPSO V3 aerosol typing in coastal regions
    (München : European Geopyhsical Union, 2014) Kanitz, T.; Ansmann, A.; Foth, A.; Seifert, P.; Wandinger, U.; Engelmann, R.; Baars, H.; Althausen, D.; Casiccia, C.; Zamorano, F.
    In the CALIPSO data analysis, surface type (land/ocean) is used to augment the aerosol characterization. However, this surface-dependent aerosol typing prohibits a correct classification of marine aerosol over land that is advected from ocean to land. This might result in a systematic overestimation of the particle extinction coefficient and of the aerosol optical thickness (AOT) of up to a factor of 3.5 over land in coastal areas. We present a long-term comparison of CALIPSO and ground-based lidar observations of the aerosol conditions in the coastal environment of southern South America (Punta Arenas, Chile, 53° S), performed in December 2009–April 2010. Punta Arenas is almost entirely influenced by marine particles throughout the year, indicated by a rather low AOT of 0.02–0.04. However, we found an unexpectedly high fraction of continental aerosol in the aerosol types inferred by means of CALIOP observations and, correspondingly, too high values of particle extinction. Similar features of the CALIOP data analysis are presented for four other coastal areas around the world. Since CALIOP data serve as important input for global climate models, the influence of this systematic error was estimated by means of simplified radiative-transfer calculations.
  • Item
    Ceilometer lidar comparison: Backscatter coefficient retrieval and signal-to-noise ratio determination
    (München : European Geopyhsical Union, 2010) Heese, B.; Flentje, H.; Althausen, D.; Ansmann, A.; Frey, S.
    The potential of a new generation of ceilometer instruments for aerosol monitoring has been studied in the Ceilometer Lidar Comparison (CLIC) study. The used ceilometer was developed by Jenoptik, Germany, and is designed to find both thin cirrus clouds at tropopause level and aerosol layers at close ranges during day and night-time. The comparison study was performed to determine up to which altitude the ceilometers are capable to deliver particle backscatter coefficient profiles. For this, the derived ceilometer profiles are compared to simultaneously measured lidar profiles at the same wavelength. The lidar used for the comparison was the multi-wavelengths Raman lidar PollyXT. To demonstrate the capabilities and limits of ceilometers for the derivation of particle backscatter coefficient profiles from their measurements two examples of the comparison results are shown. Two cases, a daytime case with high background noise and a less noisy night-time case, are chosen. In both cases the ceilometer profiles compare well with the lidar profiles in atmospheric structures like aerosol layers or the boundary layer top height. However, the determination of the correct magnitude of the particle backscatter coefficient needs a calibration of the ceilometer data with an independent measurement of the aerosol optical depth by a sun photometer. To characterizes the ceilometers signal performance with increasing altitude a comprehensive signal-to-noise ratio study was performed. During daytime the signal-to-noise ratio is higher than 1 up to 4–5 km depending on the aerosol content. In our night-time case the SNR is higher than 1 even up to 8.5 km, so that also aerosol layers in the upper troposphere had been detected by the ceilometer.
  • Item
    Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke
    (Göttingen : Copernicus GmbH, 2018) Haarig, M.; Ansmann, A.; Baars, H.; Jimenez, C.; Veselovskii, I.; Engelmann, R.; Althausen, D.
    We present spectrally resolved optical and microphysical properties of western Canadian wildfire smoke observed in a tropospheric layer from 5-6.5 km height and in a stratospheric layer from 15-16 km height during a recordbreaking smoke event on 22 August 2017. Three polarization/ Raman lidars were run at the European Aerosol Research Lidar Network (EARLINET) station of Leipzig, Germany, after sunset on 22 August. For the first time, the linear depolarization ratio and extinction-to-backscatter ratio (lidar ratio) of aged smoke particles were measured at all three important lidar wavelengths of 355, 532, and 1064 nm. Very different particle depolarization ratios were found in the troposphere and in the stratosphere. The obviously compact and spherical tropospheric smoke particles caused almost no depolarization of backscattered laser radiation at all three wavelengths ( < 3 %), whereas the dry irregularly shaped soot particles in the stratosphere lead to high depolarization ratios of 22% at 355 nm and 18% at 532 nm and a comparably low value of 4% at 1064 nm. The lidar ratios were 40- 45 sr (355 nm), 65-80 sr (532 nm), and 80-95 sr (1064 nm) in both the tropospheric and stratospheric smoke layers indicating similar scattering and absorption properties. The strong wavelength dependence of the stratospheric depolarization ratio was probably caused by the absence of a particle coarse mode (particle mode consisting of particles with radius > 500nm). The stratospheric smoke particles formed a pronounced accumulation mode (in terms of particle volume or mass) centered at a particle radius of 350-400 nm. The effective particle radius was 0.32 μm. The tropospheric smoke particles were much smaller (effective radius of 0.17 μm). Mass concentrations were of the order of 5.5 μgm-3 (tropospheric layer) and 40 μgm-3 (stratospheric layer) in the night of 22 August 2017. The single scattering albedo of the stratospheric particles was estimated to be 0.74, 0.8, and 0.83 at 355, 532, and 1064 nm, respectively.
  • Item
    Radiative effect of aerosols above the northern and southern Atlantic Ocean as determined from shipborne lidar observations
    (Hoboken, NJ : Wiley, 2013) Kanitz, T.; Ansmann, Albert; Seifert, P.; Engelmann, R.; Althausen, D.
    The direct solar radiative effect of aerosols over the Atlantic Ocean was investigated on the basis of aerosol Raman/polarization lidar observations aboard the research vessel Polarsternbetween Germany (50°N) and either South America (50°S) or South Africa (40°S) in 2009 and 2010. First, a case study of complex aerosol conditions with marine aerosol, dust, and smoke particles in the boundary layer and free troposphere is presented to demonstrate that detailed knowledge of aerosol layering (boundary layer, free troposphere) and aerosol mixing state is required for an accurate determination of the resulting radiative effects. A statistical analysis based on all lidar observations revealed the highest daily mean radiative effect (−43±59 W m−2at the surface, −14±18 W m−2at top of atmosphere) in the latitudinal belt from 0°N–15°N in the Saharan dust outflow region. Mean aerosol radiative effects of the polluted northern and clean southern midlatitudes were contrasted. In the northern midlatitudes, the averaged aerosol radiative effect of all simulations was −24±33 W m−2at the surface which is a factor of 1.6 higher than at similar southern hemispheric latitudes. The simulations based on the lidar observations are in good agreement with colocated pyranometer measurements.
  • Item
    New-particle formation events in a continental boundary layer: First results from the SATURN experiment
    (München : European Geopyhsical Union, 2003) Stratmann, F.; Siebert, H.; Spindler, G.; Wehner, B.; Althausen, D.; Heintzenberg, J.; Hellmuth, O.; Rinke, R.; Schmieder, U.; Seidel, C.; Tuch, T.; Uhrner, U.; Wiedensohler, A.; Wandinger, U.; Wendisch, M.; Schell, D.; Stohl, A.
    During the SATURN experiment, which took place from 27 May to 14 June 2002, new particle formation in the continental boundary layer was investigated. Simultaneous ground-based and tethered-balloon-borne measurements were performed, including meteorological parameters, particle number concentrations and size distributions, gaseous precursor concentrations and SODAR and LIDAR observations. Newly formed particles were observed inside the residual layer, before the break-up process of the nocturnal inversion, and inside the mixing layer throughout the break-up of the nocturnal inversion and during the evolution of the planetary boundary layer.