Search Results

Now showing 1 - 10 of 14
  • Item
    The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation
    (München : European Geopyhsical Union, 2016) Engelmann, Ronny; Kanitz, Thomas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Skupin, Annett; Wandinger, Ulla; Komppula, Mika; Stachlewska, Iwona S.; Amiridis, Vassilis; Marinou, Eleni; Mattis, Ina; Linné, Holger; Ansmann, Albert
    The atmospheric science community demands autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly was developed at TROPOS in 2003. The lidar system was continuously improved with gained experience from the EARLINET community, involvement in worldwide field campaigns, and international institute collaborations within the last 10 years. Here we present recent changes of the setup of the portable multiwavelength Raman and polarization lidar PollyXT and discuss the improved capabilities of the system by means of a case study. The latest system developments include an additional near-range receiver unit for Raman measurements of the backscatter and extinction coefficient down to 120 m above ground, a water-vapor channel, and channels for simultaneous measurements of the particle linear depolarization ratio at 355 and 532 nm. Quality improvements were achieved by systematically following the EARLINET guidelines and the international PollyNET quality assurance developments. A modified ship radar ensures measurements in agreement with air-traffic safety regulations and allows for 24∕7 monitoring of the atmospheric state with PollyXT.
  • Item
    Ozone depletion in the Arctic and Antarctic stratosphere induced by wildfire smoke
    (Katlenburg-Lindau : EGU, 2022) Ansmann, Albert; Ohneiser, Kevin; Chudnovsky, Alexandra; Knopf, Daniel A.; Eloranta, Edwin W.; Villanueva, Diego; Seifert, Patric; Radenz, Martin; Barja, Boris; Zamorano, Félix; Jimenez, Cristofer; Engelmann, Ronny; Baars, Holger; Griesche, Hannes; Hofer, Julian; Althausen, Dietrich; Wandinger, Ulla
    A record-breaking stratospheric ozone loss was observed over the Arctic and Antarctica in 2020. Strong ozone depletion occurred over Antarctica in 2021 as well. The ozone holes developed in smoke-polluted air. In this article, the impact of Siberian and Australian wildfire smoke (dominated by organic aerosol) on the extraordinarily strong ozone reduction is discussed. The study is based on aerosol lidar observations in the North Pole region (October 2019-May 2020) and over Punta Arenas in southern Chile at 53.2°S (January 2020-November 2021) as well as on respective NDACC (Network for the Detection of Atmospheric Composition Change) ozone profile observations in the Arctic (Ny-Ålesund) and Antarctica (Neumayer and South Pole stations) in 2020 and 2021. We present a conceptual approach on how the smoke may have influenced the formation of polar stratospheric clouds (PSCs), which are of key importance in the ozone-depleting processes. The main results are as follows: (a) the direct impact of wildfire smoke below the PSC height range (at 10-12 km) on ozone reduction seems to be similar to well-known volcanic sulfate aerosol effects. At heights of 10-12 km, smoke particle surface area (SA) concentrations of 5-7 μm2 cm-3 (Antarctica, spring 2021) and 6-10 μm2 cm-3 (Arctic, spring 2020) were correlated with an ozone reduction in terms of ozone partial pressure of 0.4-1.2 mPa (about 30 % further ozone reduction over Antarctica) and of 2-3.5 mPa (Arctic, 20 %-30 % reduction with respect to the long-term springtime mean). (b) Within the PSC height range, we found indications that smoke was able to slightly increase the PSC particle number and surface area concentration. In particular, a smoke-related additional ozone loss of 1-2 mPa (10 %-20 % contribution to the total ozone loss over Antarctica) was observed in the 14-23 km PSC height range in September-October 2020 and 2021. Smoke particle number concentrations ranged from 10 to 100 cm-3 and were about a factor of 10 (in 2020) and 5 (in 2021) above the stratospheric aerosol background level. Satellite observations indicated an additional mean column ozone loss (deviation from the long-term mean) of 26-30 Dobson units (9 %-10 %, September 2020, 2021) and 52-57 Dobson units (17 %-20 %, October 2020, 2021) in the smoke-polluted latitudinal Antarctic belt from 70-80°S. Copyright:
  • Item
    EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product
    (Katlenburg-Lindau : EGU, 2019) Proestakis, Emmanouil; Amiridis, Vassilis; Marinou, Eleni; Binietoglou, Ioannis; Ansmann, Albert; Wandinger, Ulla; Hofer, Julian; Yorks, John; Nowottnick, Edward; Makhmudov, Abduvosit; Papayannis, Alexandros; Pietruczuk, Aleksander; Gialitaki, Anna; Apituley, Arnoud; Szkop, Artur; Muñoz Porcar, Constantino; Bortoli, Daniele; Dionisi, Davide; Althausen, Dietrich; Mamali, Dimitra; Balis, Dimitris; Nicolae, Doina; Tetoni, Eleni; Liberti, Gian Luigi; Baars, Holger; Mattis, Ina; Stachlewska, Iwona Sylwia; Voudouri, Kalliopi Artemis; Mona, Lucia; Mylonaki, Maria; Perrone, Maria Rita; Costa, Maria João; Sicard, Michael; Papagiannopoulos, Nikolaos; Siomos, Nikolaos; Burlizzi, Pasquale; Pauly, Rebecca; Engelmann, Ronny; Abdullaev, Sabur; Pappalardo, Gelsomina
    We present the evaluation activity of the European Aerosol Research Lidar Network (EARLINET) for the quantitative assessment of the Level 2 aerosol backscatter coefficient product derived by the Cloud-Aerosol Transport System (CATS) aboard the International Space Station (ISS; Rodier et al., 2015). The study employs correlative CATS and EARLINET backscatter measurements within a 50km distance between the ground station and the ISS overpass and as close in time as possible, typically with the starting time or stopping time of the EARLINET performed measurement time window within 90min of the ISS overpass, for the period from February 2015 to September 2016. The results demonstrate the good agreement of the CATS Level 2 backscatter coefficient and EARLINET. Three ISS overpasses close to the EARLINET stations of Leipzig, Germany; Évora, Portugal; and Dushanbe, Tajikistan, are analyzed here to demonstrate the performance of the CATS lidar system under different conditions. The results show that under cloud-free, relative homogeneous aerosol conditions, CATS is in good agreement with EARLINET, independent of daytime and nighttime conditions. CATS low negative biases are observed, partially attributed to the deficiency of lidar systems to detect tenuous aerosol layers of backscatter signal below the minimum detection thresholds; these are biases which may lead to systematic deviations and slight underestimations of the total aerosol optical depth (AOD) in climate studies. In addition, CATS misclassification of aerosol layers as clouds, and vice versa, in cases of coexistent and/or adjacent aerosol and cloud features, occasionally leads to non-representative, unrealistic, and cloud-contaminated aerosol profiles. Regarding solar illumination conditions, low negative biases in CATS backscatter coefficient profiles, of the order of 6.1%, indicate the good nighttime performance of CATS. During daytime, a reduced signal-to-noise ratio by solar background illumination prevents retrievals of weakly scattering atmospheric layers that would otherwise be detectable during nighttime, leading to higher negative biases, of the order of 22.3%. © Author(s) 2019.
  • Item
    First triple-wavelength lidar observations of depolarization and extinction-to-backscatter ratios of Saharan dus
    (Katlenburg-Lindau : EGU, 2022) Haarig, Moritz; Ansmann, Albert; Engelmann, Ronny; Baars, Holger; Toledano, Carlos; Torres, Benjamin; Althausen, Dietrich; Radenz, Martin; Wandinger, Ulla
    Two layers of Saharan dust observed over Leipzig, Germany, in February and March 2021 were used to provide the first-ever lidar measurements of the dust lidar ratio (extinction-to-backscatter ratio) and linear depolarization ratio at all three classical lidar wavelengths (355, 532 and 1064gnm). The pure-dust conditions during the first event exhibit lidar ratios of 47g±g8, 50g±g5 and 69g±g14gsr and particle linear depolarization ratios of 0.242g±g0.024, 0.299g±g0.018 and 0.206g±g0.010 at wavelengths of 355, 532 and 1064gnm, respectively. The second, slightly polluted-dust case shows a similar spectral behavior of the lidar and depolarization ratio with values of the lidar ratio of 49g±g4, 46g±g5 and 57g±g9gsr and the depolarization ratio of 0.174g±g0.041, 0.298g±g0.016 and 0.242g±g0.007 at 355, 532 and 1064gnm, respectively. The results were compared with Aerosol Robotic Network (AERONET) version 3 (v3) inversion solutions and the Generalized Retrieval of Aerosol and Surface Properties (GRASP) at six and seven wavelengths. Both retrieval schemes make use of a spheroid shape model for mineral dust. The spectral slope of the lidar ratio from 532 to 1064gnm could be well reproduced by the AERONET and GRASP retrieval schemes. Higher lidar ratios in the UV were retrieved by AERONET and GRASP. The enhancement was probably caused by the influence of fine-mode pollution particles in the boundary layer which are included in the columnar photometer measurements. Significant differences between the measured and retrieved wavelength dependence of the particle linear depolarization ratio were found. The potential sources for these uncertainties are discussed.
  • Item
    Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados during SALTRACE in 2013 and 2014
    (Katlenburg-Lindau : EGU, 2017) Haarig, Moritz; Ansmann, Albert; Althausen, Dietrich; Klepel, André; Groß, Silke; Freudenthaler, Volker; Toledano, Carlos; Mamouri, Rodanthi-Elisavet; Farrell, David A.; Prescod, Damien A.; Marinou, Eleni; Burton, Sharon P.; Gasteiger, Josef; Engelmann, Ronny; Baars, Holger
    Triple-wavelength polarization lidar measurements in Saharan dust layers were performed at Barbados (13.1°N, 59.6°W), 5000-8000km west of the Saharan dust sources, in the framework of the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE-1, June-July 2013, SALTRACE-3, June-July 2014). Three case studies are discussed. High quality was achieved by comparing the dust linear depolarization ratio profiles measured at 355, 532, and 1064nm with respective dual-wavelength (355, 532nm) depolarization ratio profiles measured with a reference lidar. A unique case of long-range transported dust over more than 12000km is presented. Saharan dust plumes crossing Barbados were measured with an airborne triple-wavelength polarization lidar over Missouri in the midwestern United States 7 days later. Similar dust optical properties and depolarization features were observed over both sites indicating almost unchanged dust properties within this 1 week of travel from the Caribbean to the United States. The main results of the triple-wavelength polarization lidar observations in the Caribbean in the summer seasons of 2013 and 2014 are summarized. On average, the particle linear depolarization ratios for aged Saharan dust were found to be 0.252±0.030 at 355nm, 0.280±0.020 at 532nm, and 0.225±0.022 at 1064nm after approximately 1 week of transport over the tropical Atlantic. Based on published simulation studies we present an attempt to explain the spectral features of the depolarization ratio of irregularly shaped mineral dust particles, and conclude that most of the irregularly shaped coarse-mode dust particles (particles with diameters > 1μm) have sizes around 1.5-2μm. The SALTRACE results are also set into the context of the SAMUM-1 (Morocco, 2006) and SAMUM-2 (Cabo Verde, 2008) depolarization ratio studies. Again, only minor changes in the dust depolarization characteristics were observed on the way from the Saharan dust sources towards the Caribbean.
  • Item
    Sun photometer retrievals of Saharan dust properties over Barbados during SALTRACE
    (Katlenburg-Lindau : EGU, 2019) Toledano, Carlos; Torres, Benjamín; Velasco-Merino, Cristian; Althausen, Dietrich; Groß, Silke; Wiegner, Matthias; Weinzierl, Bernadett; Gasteiger, Josef; Ansmann, Albert; González, Ramiro; Mateos, David; Farrel, David; Müller, Thomas; Haarig, Moritz; Cachorro, Victoria E.
    The Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was devoted to the investigation of Saharan dust properties over the Caribbean. The campaign took place in June-July 2013. A wide set of ground-based and airborne aerosol instrumentation was deployed at the island of Barbados for a comprehensive experiment. Several sun photometers performed measurements during this campaign: two AERONET (Aerosol Robotic Network) Cimel sun photometers and the Sun and Sky Automatic Radiometer (SSARA). The sun photometers were co-located with the ground-based multi-wavelength lidars BERTHA (Backscatter Extinction lidar Ratio Temperature Humidity profiling Apparatus) and POLIS (Portable Lidar System). Aerosol properties derived from direct sun and sky radiance observations are analyzed, and a comparison with the co-located lidar and in situ data is provided. The time series of aerosol optical depth (AOD) allows identifying successive dust events with short periods in between in which the marine background conditions were observed. The moderate aerosol optical depth in the range of 0.3 to 0.6 was found during the dust periods. The sun photometer infrared channel at the 1640nm wavelength was used in the retrieval to investigate possible improvements to aerosol size retrievals, and it was expected to have a larger sensitivity to coarse particles. The comparison between column (aerosol optical depth) and surface (dust concentration) data demonstrates the connection between the Saharan Air Layer and the boundary layer in the Caribbean region, as is shown by the synchronized detection of the successive dust events in both datasets. However the differences of size distributions derived from sun photometer data and in situ observations reveal the difficulties in carrying out a column closure study. © 2019 All rights reserved.
  • Item
    An overview of the first decade of PollyNET: An emerging network of automated Raman-polarization lidars for continuous aerosol profiling
    (München : European Geopyhsical Union, 2016) Baars, Holger; Kanitz, Thomas; Engelmann, Ronny; Althausen, Dietrich; Heese, Birgit; Komppula, Mika; Preißler, Jana; Tesche, Matthias; Ansmann, Albert; Wandinger, Ulla; Lim, Jae-Hyun; Ahn, Joon Young; Stachlewska, Iwona S.; Amiridis, Vassilis; Marinou, Eleni; Seifert, Patric; Hofer, Julian; Skupin, Annett; Schneider, Florian; Bohlmann, Stephanie; Foth, Andreas; Bley, Sebastian; Pfüller, Anne; Giannakaki, Eleni; Lihavainen, Heikki; Viisanen, Yrjö; Hooda, Rakesh Kumar; Pereira, Sérgio Nepomuceno; Bortol, Daniele; Wagner, Frank; Mattis, Ina; Janicka, Lucja; Markowicz, Krzysztof M.; Achtert, Peggy; Artaxo, Paulo; Pauliquevis, Theotonio; Souza, Rodrigo A.F.; Sharma, Ved Prakesh; van Zyl, Pieter Gideon; Beukes, Johan Paul; Sun, Junying; Rohwer, Erich G.; Deng, Ruru; Mamouri, Rodanthi-Elisavet; Zamorano, Felix
    A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.
  • Item
    Profiles of cloud condensation nuclei, dust mass concentration, and ice-nucleating-particle-relevant aerosol properties in the Saharan Air Layer over Barbados from polarization lidar and airborne in situ measurements
    (Katlenburg-Lindau : EGU, 2019) Haarig, Moritz; Walser, Adrian; Ansmann, Albert; Dollner, Maximilian; Althausen, Dietrich; Sauer, Daniel; Farrell, David; Weinzierl, Bernadett
    The present study aims to evaluate lidar retrievals of cloud-relevant aerosol properties by using polarization lidar and coincident airborne in situ measurements in the Saharan Air Layer (SAL) over the Barbados region. Vertical profiles of the number concentration of cloud condensation nuclei (CCN), large particles (diameter d > 500 nm), surface area, mass, and ice-nucleating particle (INP) concentration are derived from the lidar measurements and compared with CCN concentrations and the INP-relevant aerosol properties measured in situ with aircraft. The measurements were performed in the framework of the Saharan Aerosol Longrange Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in summer 2013. The CCN number concentrations derived from lidar observations were up to a factor of 2 higher than the ones measured in situ aboard the research aircraft Falcon. Possible reasons for the difference are discussed. The number concentration of particles with a dry radius of more than 250 nm and the surface-area concentration obtained from the lidar observations and used as input for the INP parameterizations agreed well (< 30 %-50 % deviation) with the aircraft measurements. In a pronounced lofted dust layer during summer (10 July 2013), the lidar retrieval yielded 100-300 CCN per cubic centimeter at 0.2 % water supersaturation and 10-200 INPs per liter at-25?C. Excellent agreement was also obtained in the comparison of mass concentration profiles. During the SALTRACE winter campaign (March 2014), the dust layer from Africa was mixed with smoke particles which dominated the CCN number concentration. This example highlights the unique lidar potential to separate smoke and dust contributions to the CCN reservoir and thus to identify the sensitive role of smoke in trade wind cumuli developments over the tropical Atlantic during the winter season. © 2017 Georg Thieme Verlag. All rights reserved.
  • Item
    Doppler lidar studies of heat island effects on vertical mixing of aerosols during SAMUM-2
    (Milton Park : Taylor & Francis, 2017) Engelmann, Ronny; Ansmann, Albert; Horn, Stefan; Seifert, Patric; Althausen, Dietrich; Tesche, Matthias; Esselborn, Michael; Fruntke, Julia; Lieke, Kirsten; Freudenthaler, Volker; Gross, Silke
    A wind Doppler lidar was deployed next to three aerosol lidars during the SAMUM–2 campaign on the main island of Cape Verde. The effects of the differential heating of the island and the surrounding ocean and the orographic impact of the capital island Santiago and the small island on its luv side, Maio, are investigated. Horizontal and vertical winds were measured in the disturbed maritime boundary layer and compared to local radiosoundings. Lidar measurements from the research aircraft Falcon and a 3-D Large Eddy Simulation (LES) model were used in addition to study the heating effects on the scale of the islands. Indications are found that these effects can widely control the downward mixing from greater heights to the surface of African aerosols, mainly Saharan dust and biomass-burning smoke, which were detected in a complex layering over the Cape Verde region.
  • Item
    Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Freudenthaler, Volker; Esselborn, Michael; Wiegner, Matthias; Heese, Birgit; Tesche, Matthias; Ansmann, Albert; Müller, Detlef; Althausen, Dietrich; Wirth, Martin; Fix, Andreas; Ehret, Gerhard; Knippertz, Peter; Toledano, Carlos; Gasteiger, Josef; Garhammer, Markus; Seefeldner, Meinhard
    Vertical profiles of the linear particle depolarization ratio of pure dust clouds were measured during the Saharan Mineral Dust Experiment (SAMUM) at Ouarzazate, Morocco (30.9◦N, –6.9◦E), close to source regions in May–June 2006, with four lidar systems at four wavelengths (355, 532, 710 and 1064 nm). The intercomparison of the lidar systems is accompanied by a discussion of the different calibration methods, including a new, advanced method, and a detailed error analysis. Over the whole SAMUM periode pure dust layers show a mean linear particle depolarization ratio at 532 nm of 0.31, in the range between 0.27 and 0.35, with a mean Ångström exponent (AE, 440–870 nm) of 0.18 (range 0.04–0.34) and still high mean linear particle depolarization ratio between 0.21 and 0.25 during periods with aerosol optical thickness less than 0.1, with a mean AE of 0.76 (range 0.65–1.00), which represents a negative correlation of the linear particle depolarization ratio with the AE. A slight decrease of the linear particle depolarization ratio with wavelength was found between 532 and 1064 nm from 0.31 ± 0.03 to 0.27 ± 0.04.