Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Vertically resolved dust optical properties during SAMUM: Tinfou compared to Ouarzazate

2017, Heese, Birgit, Althausen, Dietrich, Dinter, Tilman, Esselborn, Michael, Müller, Thomas, Tesche, Matthias, Wiegner, Matthias

Vertical profiles of dust key optical properties are presented from measurements during the Saharan Mineral Dust Experiment (SAMUM) by Raman and depolarization lidar at two ground-based sites and by airborne high spectral resolution lidar. One of the sites, Tinfou, is located close to the border of the Sahara in Southern Morocco and was the main in situ site during SAMUM. The other site was Ouarzazate airport, the main lidar site. From the lidar measurements the spatial distribution of the dust between Tinfou and Ouarzazate was derived for 1 d. The retrieved profiles of backscatter and extinction coefficients and particle depolarization ratios show comparable dust optical properties, a similar vertical structure of the dust layer, and a height of about 4 km asl at both sites. The airborne cross-section of the extinction coefficient at the two sites confirms the low variability in dust properties. Although the general picture of the dust layer was similar, the lidar measurements reveal a higher dust load closer to the dust source. Nevertheless, the observed intensive optical properties were the same. These results indicate that the lidar measurements at two sites close to the dust source are both representative for the SAMUM dust conditions.

Loading...
Thumbnail Image
Item

Regional Saharan dust modelling during the SAMUM 2006 campaign

2017, Heinold, Bernd, Tegen, Ina, Esselborn, Michael, Kandler, Konrad, Knippertz, Peter, Müller, Detlef, Schladitz, Alexander, Tesche, Matthias, Weinzierl, Bernadett, Ansmann, Albert, Althausen, Dietrich, Laurent, Benoit, Massling, Andreas, Müller, Thomas, Petzold, Andreas, Schepanski, Kerstin, Wiedensohler, Alfred

The regional dust model system LM-MUSCAT-DES was developed in the framework of the SAMUM project. Using the unique comprehensive data set of near-source dust properties during the 2006SAMUMfield campaign, the performance of the model system is evaluated for two time periods in May and June 2006. Dust optical thicknesses, number size distributions and the position of the maximum dust extinction in the vertical profiles agree well with the observations. However, the spatio-temporal evolution of the dust plumes is not always reproduced due to inaccuracies in the dust source placement by the model. While simulated winds and dust distributions are well matched for dust events caused by dry synoptic-scale dynamics, they are often misrepresented when dust emissions are caused by moist convection or influenced by small-scale topography that is not resolved by the model. In contrast to long-range dust transport, in the vicinity of source regions the model performance strongly depends on the correct prediction of the exact location of sources. Insufficiently resolved vertical grid spacing causes the absence of inversions in the model vertical profiles and likely explains the absence of the observed sharply defined dust layers.