Search Results

Now showing 1 - 4 of 4
  • Item
    Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data
    (München : European Geopyhsical Union, 2018) Dai, Guangyao; Althausen, Dietrich; Hofer, Julian; Engelmann, Ronny; Seifert, Patric; Bühl, Johannes; Mamouri, Rodanthi-Elisavet; Wu, Songhua; Ansmann, Albert
    We present a practical method to continuously calibrate Raman lidar observations of water vapor mixing ratio profiles. The water vapor profile measured with the multiwavelength polarization Raman lidar PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor from the lidar observations is used for the calibration of the lidar measurements with the sun photometer measurements. The retrieved calibrated water vapor mixing ratio from the lidar measurements has a relative uncertainty of 11 % in which the error is mainly caused by the error of the sun photometer measurements. During CyCARE, nine measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the PollyXT Raman lidar is 6.56 g kg−1 ± 0.72 g kg−1 (with a statistical uncertainty of 0.08 g kg−1 and an instrumental uncertainty of 0.72 g kg−1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full potential of a well-calibrated Raman lidar. The relative humidity profiles from lidar, GDAS (simulation) and radiosonde are compared, too. It is found that the combination of water vapor mixing ratio and GDAS temperature profiles allow us to derive relative humidity profiles with the relative uncertainty of 10–20 %.
  • Item
    Continuous vertical aerosol profiling with a multi-wavelength Raman polarization lidar over the Pearl River Delta, China
    (Katlenburg-Lindau : EGU, 2017) Heese, Birgit; Baars, Holger; Bohlmann, Stephanie; Althausen, Dietrich; Deng, Ruru
    A dataset of particle optical properties of the highly polluted atmosphere over the Pearl River Delta (PRD), Guangzhou, China, is presented in this paper. The data were derived from the measurements of a multiwavelength Raman and depolarization lidar PollyXT and a co-located AERONET sun photometer. The measurement campaign was conducted from November 2011 to mid-June 2012. These are the first Raman lidar measurements in the PRD that lasted for several months. A mean value of aerosol optical depth (AOD) of 0.54±0.33 was observed by the sun photometer at 500 nm in the polluted atmosphere over this megacity for the whole measurement period. The lidar profiles frequently show lofted aerosol layers, which reach altitudes of up to 2 to 3 km and, especially during the spring season, up to 5 km. These layers contain between 12 and 56% of the total AOD, with the highest values in spring. The aerosol types in these lofted layers are classified by their optical properties. The observed lidar ratio values range from 30 to 80 sr with a mean value of 48.0±10.7 sr at 532 nm. The linear particle depolarization ratio at 532 nm lies mostly below 5 %, with a mean value of 3.6±3.7 %. The majority of the Ångström exponents lie between 0.5 and 1.5, indicating a mixture of fine- and coarsemode aerosols. These results reveal that mostly urban pollution particles mixed with particles produced from biomass and industrial burning are present in the atmosphere above the Pearl River Delta. Trajectory analyses show that these pollution mixtures arise mainly from local and regional sources.
  • Item
    Sun photometer retrievals of Saharan dust properties over Barbados during SALTRACE
    (Katlenburg-Lindau : EGU, 2019) Toledano, Carlos; Torres, Benjamín; Velasco-Merino, Cristian; Althausen, Dietrich; Groß, Silke; Wiegner, Matthias; Weinzierl, Bernadett; Gasteiger, Josef; Ansmann, Albert; González, Ramiro; Mateos, David; Farrel, David; Müller, Thomas; Haarig, Moritz; Cachorro, Victoria E.
    The Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was devoted to the investigation of Saharan dust properties over the Caribbean. The campaign took place in June-July 2013. A wide set of ground-based and airborne aerosol instrumentation was deployed at the island of Barbados for a comprehensive experiment. Several sun photometers performed measurements during this campaign: two AERONET (Aerosol Robotic Network) Cimel sun photometers and the Sun and Sky Automatic Radiometer (SSARA). The sun photometers were co-located with the ground-based multi-wavelength lidars BERTHA (Backscatter Extinction lidar Ratio Temperature Humidity profiling Apparatus) and POLIS (Portable Lidar System). Aerosol properties derived from direct sun and sky radiance observations are analyzed, and a comparison with the co-located lidar and in situ data is provided. The time series of aerosol optical depth (AOD) allows identifying successive dust events with short periods in between in which the marine background conditions were observed. The moderate aerosol optical depth in the range of 0.3 to 0.6 was found during the dust periods. The sun photometer infrared channel at the 1640nm wavelength was used in the retrieval to investigate possible improvements to aerosol size retrievals, and it was expected to have a larger sensitivity to coarse particles. The comparison between column (aerosol optical depth) and surface (dust concentration) data demonstrates the connection between the Saharan Air Layer and the boundary layer in the Caribbean region, as is shown by the synchronized detection of the successive dust events in both datasets. However the differences of size distributions derived from sun photometer data and in situ observations reveal the difficulties in carrying out a column closure study. © 2019 All rights reserved.
  • Item
    Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM
    (Milton Park : Taylor & Francis, 2017) Tesche, Matthias; Ansmann, Albert; MüLLER, Detlef; Althausen, Dietrich; Mattis, Ina; Heese, Birgit; Freudenthaler, Volker; Wiegner, Matthias; Esselborn, Michael; Pisani, Gianluca; Knippertz, Peter
    Three ground-based Raman lidars and an airborne high-spectral-resolution lidar (HSRL) were operated duringSAMUM 2006 in southern Morocco to measure height profiles of the volume extinction coefficient, the extinction-to-backscatter ratio and the depolarization ratio of dust particles in the Saharan dust layer at several wavelengths. Aerosol Robotic Network (AERONET) Sun photometer observations and radiosoundings of meteorological parameters complemented the ground-based activities at the SAMUM station of Ouarzazate. Four case studies are presented. Two case studies deal with the comparison of observations of the three ground-based lidars during a heavy dust outbreak and of the ground-based lidars with the airborne lidar. Two further cases show profile observations during satellite overpasses on 19 May and 4 June 2006. The height resolved statistical analysis reveals that the dust layer top typically reaches 4–6 km height above sea level (a.s.l.), sometimes even 7 km a.s.l.. Usually, a vertically inhomogeneous dust plume with internal dust layers was observed in the morning before the evolution of the boundary layer started. The Saharan dust layer was well mixed in the early evening. The 500 nm dust optical depth ranged from 0.2–0.8 at the field site south of the High Atlas mountains, Ångström exponents derived from photometer and lidar data were between 0–0.4. The volume extinction coefficients (355, 532 nm) varied from 30–300Mm−1 with a mean value of 100Mm−1 in the lowest 4 km a.s.l.. On average, extinction-to-backscatter ratios of 53–55 sr (±7–13 sr) were obtained at 355, 532 and 1064 nm.