Search Results

Now showing 1 - 2 of 2
  • Item
    Metabolic Profiling of Thymic Epithelial Tumors Hints to a Strong Warburg Effect, Glutaminolysis and Precarious Redox Homeostasis as Potential Therapeutic Targets
    (Basel : MDPI, 2022) Alwahsh, Mohammad; Knitsch, Robert; Marchan, Rosemarie; Lambert, Jörg; Hoerner, Christian; Zhang, Xiaonan; Schalke, Berthold; Lee, De-Hyung; Bulut, Elena; Graeter, Thomas; Ott, German; Kurz, Katrin S.; Preissler, Gerhard; Schölch, Sebastian; Farhat, Joviana; Yao, Zhihan; Sticht, Carsten; Ströbel, Philipp; Hergenröder, Roland; Marx, Alexander; Belharazem, Djeda
    Thymomas and thymic carcinomas (TC) are malignant thymic epithelial tumors (TETs) with poor outcome, if non-resectable. Metabolic signatures of TETs have not yet been studied and may offer new therapeutic options. Metabolic profiles of snap-frozen thymomas (WHO types A, AB, B1, B2, B3, n = 12) and TCs (n = 3) were determined by high resolution magic angle spinning 1H nuclear magnetic resonance (HRMAS 1H-NMR) spectroscopy. Metabolite-based prediction of active KEGG metabolic pathways was achieved with MetPA. In relation to metabolite-based metabolic pathways, gene expression signatures of TETs (n = 115) were investigated in the public “The Cancer Genome Atlas” (TCGA) dataset using gene set enrichment analysis. Overall, thirty-seven metabolites were quantified in TETs, including acetylcholine that was not previously detected in other nonendocrine cancers. Metabolite-based cluster analysis distinguished clinically indolent (A, AB, B1) and aggressive TETs (B2, B3, TCs). Using MetPA, six KEGG metabolic pathways were predicted to be activated, including proline/arginine, glycolysis and glutathione pathways. The activated pathways as predicted by metabolite-profiling were generally enriched transcriptionally in the independent TCGA dataset. Shared high lactic acid and glutamine levels, together with associated gene expression signatures suggested a strong “Warburg effect”, glutaminolysis and redox homeostasis as potential vulnerabilities that need validation in a large, independent cohort of aggressive TETs. If confirmed, targeting metabolic pathways may eventually prove as adjunct therapeutic options in TETs, since the metabolic features identified here are known to confer resistance to cisplatin-based chemotherapy, kinase inhibitors and immune checkpoint blockers, i.e., currently used therapies for non-resectable TETs.
  • Item
    Glycolytic flux control by drugging phosphoglycolate phosphatase
    ([London] : Nature Publishing Group UK, 2022) Jeanclos, Elisabeth; Schlötzer, Jan; Hadamek, Kerstin; Yuan-Chen, Natalia; Alwahsh, Mohammad; Hollmann, Robert; Fratz, Stefanie; Yesilyurt-Gerhards, Dilan; Frankenbach, Tina; Engelmann, Daria; Keller, Angelika; Kaestner, Alexandra; Schmitz, Werner; Neuenschwander, Martin; Hergenröder, Roland; Sotriffer, Christoph; von Kries, Jens Peter; Schindelin, Hermann; Gohla, Antje
    Targeting the intrinsic metabolism of immune or tumor cells is a therapeutic strategy in autoimmunity, chronic inflammation or cancer. Metabolite repair enzymes may represent an alternative target class for selective metabolic inhibition, but pharmacological tools to test this concept are needed. Here, we demonstrate that phosphoglycolate phosphatase (PGP), a prototypical metabolite repair enzyme in glycolysis, is a pharmacologically actionable target. Using a combination of small molecule screening, protein crystallography, molecular dynamics simulations and NMR metabolomics, we discover and analyze a compound (CP1) that inhibits PGP with high selectivity and submicromolar potency. CP1 locks the phosphatase in a catalytically inactive conformation, dampens glycolytic flux, and phenocopies effects of cellular PGP-deficiency. This study provides key insights into effective and precise PGP targeting, at the same time validating an allosteric approach to control glycolysis that could advance discoveries of innovative therapeutic candidates.