Search Results

Now showing 1 - 10 of 31
  • Item
    Temporal cavity solitons in a delayed model of a dispersive cavity ring laser
    (Les Ulis : EDP Sciences, 2020) Pimenov, Alexander; Amiranashvili, Shalva; Vladimirov, Andrei G.; Eleuteri, Michela; Krejčí, Pavel; Rachinskii, Dmitrii
    Nonlinear localised structures appear as solitary states in systems with multistability and hysteresis. In particular, localised structures of light known as temporal cavity solitons were observed recently experimentally in driven Kerr-cavities operating in the anomalous dispersion regime when one of the two bistable spatially homogeneous steady states exhibits a modulational instability. We use a distributed delay system to study theoretically the formation of temporal cavity solitons in an optically injected ring semiconductor-based fiber laser, and propose an approach to derive reduced delay-differential equation models taking into account the dispersion of the intracavity fiber delay line. Using these equations we perform the stability and bifurcation analysis of injection-locked continuous wave states and temporal cavity solitons.
  • Item
    The Effect of Chirp on Pulse Compression at a Group Velocity Horizon
    (New York, NY : IEEE, 2016) Babushkin, Ihar; Amiranashvili, Shalva; Bree, Carsten; Morgner, Uwe; Steinmeyer, Gunter; Demircan, Ayhan
    Group-velocity matched cross-phase modulation between a fundamental soliton and a dispersive wave packet has been previously suggested for optical switching applications similar to an optical transistor. Moreover, the nonlinear interaction in the resulting group-velocity horizon can be exploited for adiabatic compression of the soliton down into the few-cycle regime. Here, we study the delicate phase- and frequency-matching mechanism of soliton/dispersive wave interaction by controlling the input chirp of the dispersive wave. We demonstrate that such a modification of the dispersive wave can significantly alter the soliton dynamics. In particular, we show that it allows a decrease of the fiber length needed for the best compression and, to some extent, control of the trajectory of the soliton. The mechanism of such an influence is related to the modification of the phase-matching condition between the soliton and dispersive wave.
  • Item
    Extended criterion for the modulation instability
    ([London] : IOP, 2019) Amiranashvili, Shalva; Tobisch, Elena
    Modulation instability, following the classical Lighthill criterion, appears if nonlinearity and dispersion make opposite contributions to the wave frequency, e.g. in the framework of the one-dimensional nonlinear Schrödinger equation (NLSE). Several studies of the wave instabilities in optical fibers revealed four wave mixing instabilities that are not covered by the Lighthill criterion and require use of the generalized NLSE. We derive an extended criterion, which applies to all four wave interactions, covers arbitrary dispersion, and depends neither on the propagation equation nor on the slowly varying envelope approximation. © 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
  • Item
    Modeling of ultrashort optical pulses in nonlinear fibers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Amiranashvili, Shalva
    This work deals with theoretical aspects of pulse propagation. The core focus is on extreme, few-cycle pulses in optical fibers, pulses that are strongly affected by both dispersion and nonlinearity. Using Hamil- tonian methods, we discuss how the meaning of pulse envelope changes, as pulses become shorter and shorter, and why an envelope equation can still be used. We also discuss how the standard set of dispersion coefficients yields useful rational approximations for the chromatic dispersion in optical fibers. Three more specific problems are addressed thereafter. First, we present an alternative framework for ultra- short pulses in which non-envelope propagation models are used. The approach yields the limiting, shortest solitons and reveals their universal features. Second, we describe how one can manipulate an ultrashort pulse, i.e., to change its amplitude and duration in a predictable manner. Quantitative theory of the manipu- lation is presented based on perturbation theory for solitons and analogy between classical fiber optics and quantum mechanics. Last but not least, we consider a recently found alternative to the standard split-step approach for numerical solutions of the pulse propagation equations.
  • Item
    Hamiltonian structure of propagation equations for ultrashort optical pulses
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Amiranashvili, Shalva; Demircan, Ayhan
    A Hamiltonian framework is developed for a sequence of ultrashort optical pulses propagating in a nonlinear dispersive medium. To this end a second-order nonlinear wave equation is first simplified using an unidirectional approximation. All non-resonant nonlinear terms are then rigorously eliminated using a suitable change of variables in the spirit of the canonical perturbation theory. The derived propagation equation operates with a properly defined complexification of the real electric field. It accounts for arbitrary dispersion, four-wave mixing processes, weak absorption, and arbitrary pulse duration. Thereafter the so called normal variables, i.e., classical fields corresponding to the quantum creation and annihilation operators, are introduced. Neglecting absorption we finally derive the Hamiltonian formulation. The latter yields the most essential integrals of motion for the pulse propagation. These integrals reflect the time-averaged fluxes of energy, momentum, and classical photon number transferred by the pulse. The conservation laws are further used to control the numerical solutions when calculating supercontinuum generation by an ultrashort optical pulse.
  • Item
    Ultrashort optical solitons in transparent nonlinear media with arbitrary dispersion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Amiranashvili, Shalva; Bandelow, Uwe; Akhmediev, Nail
    We consider the propagation of ultrashort optical pulses in nonlinear fibers and suggest a new theoretical framework for the description of pulse dynamics and exact characterization of solitary solutions. Our approach deals with a proper complex generalization of the nonlinear Maxwell equations and completely avoids the use of the slowly varying envelope approximation. The only essential restriction is that fiber dispersion does not favor both the so-called Cherenkov radiation, as well as the resonant generation of the third harmonics, as these effects destroy ultrashort solitons. Assuming that it is not the case, we derive a continuous family of solitary solutions connecting fundamental solitons to nearly single-cycle ultrashort ones for arbitrary anomalous dispersion and cubic nonlinearity.
  • Item
    Calculation of ultrashort pulse propagation based on rational approximations for medium dispersion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Amiranashvili, Shalva; Bandelow, Uwe; Mielke, Alexander
    Ultrashort optical pulses contain only a few optical cycles and exhibit broad spectra. Their carrier frequency is therefore not well defined and their description in terms of the standard slowly varying envelope approximation becomes questionable. Existing modeling approaches can be divided in two classes, namely generalized envelope equations, that stem from the nonlinear Schrödinger equation, and non-envelope equations which treat the field directly. Based on fundamental physical rules we will present an approach that effectively interpolates between these classes and provides a suitable setting for accurate and highly efficient numerical treatment of pulse propagation along nonlinear and dispersive optical media.
  • Item
    Accelerated rogue solitons triggered by background radiation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Demircan, Ayhan; Amiranashvili, Shalva; Brée, Carsten; Morgner, Uwe; Steinmeyer, Günter
    [no abstract available]
  • Item
    Spatio-temporal pulse propagation in nonlinear dispersive optical media
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Brée, Carsten; Amiranashvili, Shalva; Bandelow, Uwe
    We discuss state-of-art approaches to modeling of propagation of ultrashort optical pulses in one and three spatial dimensions.We operate with the analytic signal formulation for the electric field rather than using the slowly varying envelope approximation, because the latter becomes questionable for few-cycle pulses. Suitable propagation models are naturally derived in terms of unidirectional approximation.
  • Item
    A model equation for ultrashort optical pulses
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Amiranashvili, Shalva; Vladimirov, Andrei; Bandelow, Uwe
    The nonlinear Schrödinger equation based on the Taylor approximation of the material dispersion can become invalid for ultrashort and few-cycle optical pulses. Instead, we use a rational fit to the dispersion function such that the resonances are naturally accounted for. This approach allows us to derive a simple non-envelope model for short pulses propagating in one spatial dimension. This model is further investigated numerically and analytically.