Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product

2019, Proestakis, Emmanouil, Amiridis, Vassilis, Marinou, Eleni, Binietoglou, Ioannis, Ansmann, Albert, Wandinger, Ulla, Hofer, Julian, Yorks, John, Nowottnick, Edward, Makhmudov, Abduvosit, Papayannis, Alexandros, Pietruczuk, Aleksander, Gialitaki, Anna, Apituley, Arnoud, Szkop, Artur, Muñoz Porcar, Constantino, Bortoli, Daniele, Dionisi, Davide, Althausen, Dietrich, Mamali, Dimitra, Balis, Dimitris, Nicolae, Doina, Tetoni, Eleni, Liberti, Gian Luigi, Baars, Holger, Mattis, Ina, Stachlewska, Iwona Sylwia, Voudouri, Kalliopi Artemis, Mona, Lucia, Mylonaki, Maria, Perrone, Maria Rita, Costa, Maria João, Sicard, Michael, Papagiannopoulos, Nikolaos, Siomos, Nikolaos, Burlizzi, Pasquale, Pauly, Rebecca, Engelmann, Ronny, Abdullaev, Sabur, Pappalardo, Gelsomina

We present the evaluation activity of the European Aerosol Research Lidar Network (EARLINET) for the quantitative assessment of the Level 2 aerosol backscatter coefficient product derived by the Cloud-Aerosol Transport System (CATS) aboard the International Space Station (ISS; Rodier et al., 2015). The study employs correlative CATS and EARLINET backscatter measurements within a 50km distance between the ground station and the ISS overpass and as close in time as possible, typically with the starting time or stopping time of the EARLINET performed measurement time window within 90min of the ISS overpass, for the period from February 2015 to September 2016. The results demonstrate the good agreement of the CATS Level 2 backscatter coefficient and EARLINET. Three ISS overpasses close to the EARLINET stations of Leipzig, Germany; Évora, Portugal; and Dushanbe, Tajikistan, are analyzed here to demonstrate the performance of the CATS lidar system under different conditions. The results show that under cloud-free, relative homogeneous aerosol conditions, CATS is in good agreement with EARLINET, independent of daytime and nighttime conditions. CATS low negative biases are observed, partially attributed to the deficiency of lidar systems to detect tenuous aerosol layers of backscatter signal below the minimum detection thresholds; these are biases which may lead to systematic deviations and slight underestimations of the total aerosol optical depth (AOD) in climate studies. In addition, CATS misclassification of aerosol layers as clouds, and vice versa, in cases of coexistent and/or adjacent aerosol and cloud features, occasionally leads to non-representative, unrealistic, and cloud-contaminated aerosol profiles. Regarding solar illumination conditions, low negative biases in CATS backscatter coefficient profiles, of the order of 6.1%, indicate the good nighttime performance of CATS. During daytime, a reduced signal-to-noise ratio by solar background illumination prevents retrievals of weakly scattering atmospheric layers that would otherwise be detectable during nighttime, leading to higher negative biases, of the order of 22.3%. © Author(s) 2019.

Loading...
Thumbnail Image
Item

Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset

2017, Marinou, Eleni, Amiridis, Vassilis, Binietoglou, Ioannis, Tsikerdekis, Athanasios, Solomos, Stavros, Proestakis, Emannouil, Konsta, Dimitra, Papagiannopoulos, Nikolaos, Tsekeri, Alexandra, Vlastou, Georgia, Zanis, Prodromos, Balis, Dimitrios, Wandinger, Ulla, Ansmann, Albert

In this study we use a new dust product developed using CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) observations and EARLINET (European Aerosol Research Lidar Network) measurements and methods to provide a 3-D multiyear analysis on the evolution of Saharan dust over North Africa and Europe. The product uses a CALIPSO L2 backscatter product corrected with a depolarization-based method to separate pure dust in external aerosol mixtures and a Saharan dust lidar ratio (LR) based on long-term EARLINET measurements to calculate the dust extinction profiles. The methodology is applied on a 9-year CALIPSO dataset (2007-2015) and the results are analyzed here to reveal for the first time the 3-D dust evolution and the seasonal patterns of dust over its transportation paths from the Sahara towards the Mediterranean and Continental Europe. During spring, the spatial distribution of dust shows a uniform pattern over the Sahara desert. The dust transport over the Mediterranean Sea results in mean dust optical depth (DOD) values up to 0.1. During summer, the dust activity is mostly shifted to the western part of the desert where mean DOD near the source is up to 0.6. Elevated dust plumes with mean extinction values between 10 and 75 Mm-1 are observed throughout the year at various heights between 2 and 6 km, extending up to latitudes of 40° N. Dust advection is identified even at latitudes of about 60° N, but this is due to rare events of episodic nature. Dust plumes of high DOD are also observed above the Balkans during the winter period and above northwest Europe during autumn at heights between 2 and 4 km, reaching mean extinction values up to 50 Mm-1. The dataset is considered unique with respect to its potential applications, including the evaluation of dust transport models and the estimation of cloud condensation nuclei (CCN) and ice nuclei (IN) concentration profiles. Finally, the product can be used to study dust dynamics during transportation, since it is capable of revealing even fine dynamical features such as the particle uplifting and deposition on European mountainous ridges such as the Alps and Carpathian Mountains.

Loading...
Thumbnail Image
Item

An automatic observation-based aerosol typing method for EARLINET

2018, Papagiannopoulos, Nikolaos, Mona, Lucia, Amodeo, Aldo, D'Amico, Giuseppe, Gumà Claramunt, Pilar, Pappalardo, Gelsomina, Alados-Arboledas, Lucas, Guerrero-Rascado, Juan Luís, Amiridis, Vassilis, Kokkalis, Panagiotis, Apituley, Arnoud, Baars, Holger, Schwarz, Anja, Wandinger, Ulla, Binietoglou, Ioannis, Nicolae, Doina, Bortoli, Daniele, Comerón, Adolfo, Rodríguez-Gómez, Alejandro, Sicard, Michaël, Papayannis, Alex, Wiegner, Matthias

We present an automatic aerosol classification method based solely on the European Aerosol Research Lidar Network (EARLINET) intensive optical parameters with the aim of building a network-wide classification tool that could provide near-real-time aerosol typing information. The presented method depends on a supervised learning technique and makes use of the Mahalanobis distance function that relates each unclassified measurement to a predefined aerosol type. As a first step (training phase), a reference dataset is set up consisting of already classified EARLINET data. Using this dataset, we defined 8 aerosol classes: clean continental, polluted continental, dust, mixed dust, polluted dust, mixed marine, smoke, and volcanic ash. The effect of the number of aerosol classes has been explored, as well as the optimal set of intensive parameters to separate different aerosol types. Furthermore, the algorithm is trained with literature particle linear depolarization ratio values. As a second step (testing phase), we apply the method to an already classified EARLINET dataset and analyze the results of the comparison to this classified dataset. The predictive accuracy of the automatic classification varies between 59% (minimum) and 90% (maximum) from 8 to 4 aerosol classes, respectively, when evaluated against pre-classified EARLINET lidar. This indicates the potential use of the automatic classification to all network lidar data. Furthermore, the training of the algorithm with particle linear depolarization values found in the literature further improves the accuracy with values for all the aerosol classes around 80%. Additionally, the algorithm has proven to be highly versatile as it adapts to changes in the size of the training dataset and the number of aerosol classes and classifying parameters. Finally, the low computational time and demand for resources make the algorithm extremely suitable for the implementation within the single calculus chain (SCC), the EARLINET centralized processing suite.