Search Results

Now showing 1 - 2 of 2
  • Item
    Airflow Characteristics Downwind a Naturally Ventilated Pig Building with a Roofed Outdoor Exercise Yard and Implications on Pollutant Distribution
    (Basel : MDPI AG, 2020) Yi, Qianying; Janke, David; Thormann, Lars; Zhang, Guoqiang; Amon, Barbara; Hempel, Sabrina; Nosek, Štěpán; Hartung, Eberhard; Amon, Thomas
    The application of naturally ventilated pig buildings (NVPBs) with outdoor exercise yards is on the rise mainly due to animal welfare considerations, while the issue of emissions from the buildings to the surrounding environment is important. Since air pollutants are mainly transported by airflow, the knowledge on the airflow characteristics downwind the building is required. The objective of this research was to investigate airflow properties downwind of a NVPB with a roofed outdoor exercise yard for roof slopes of 5°, 15°, and 25°. Air velocities downwind a 1:50 scaled NVPB model were measured using a Laser Doppler Anemometer in a large boundary layer wind tunnel. A region with reduced mean air velocities was found along the downwind side of the building with a distance up to 0.5 m (i.e., 3.8 times building height), in which the emission concentration might be high. Additional air pollutant treatment technologies applied in this region might contribute to emission mitigation effectively. Furthermore, a wake zone with air recirculation was observed in this area. A smaller roof slope (i.e., 5° slope) resulted in a higher and shorter wake zone and thus a shorter air pollutant dispersion distance.
  • Item
    Methane Emission Characteristics of Naturally Ventilated Cattle Buildings
    (Basel : MDPI AG, 2020) Hempel, Sabrina; Willink, Diliara; Janke, David; Ammon, Christian; Amon, Barbara; Amon, Thomas
    The mandate to limit global temperature rise calls for a reliable quantification of gaseous pollutant emissions as a basis for effective mitigation. Methane emissions from ruminant fermentation are of particular relevance in the context of greenhouse gas mitigation. The emission dynamics are so far insufficiently understood. We analyzed hourly methane emission data collected during contrasting seasons from two naturally ventilated dairy cattle buildings with concrete floor and performed a second order polynomial regression. We found a parabolic temperature dependence of the methane emissions irrespective of the measurement site and setup. The position of the parabola vertex varied when considering different hours of the day. The circadian rhythm of methane emissions was represented by the pattern of the fitted values of the constant term of the polynomial and could be well explained by feeding management and air flow conditions. We found barn specific emission minima at ambient temperatures around 10 °C to 15 °C. As this identified temperature optimum coincides with the welfare temperature of dairy cows, we concluded that temperature regulation of dairy cow buildings with concrete floor should be considered and further investigated as an emission mitigation measure. Our results further indicated that empirical modeling of methane emissions from the considered type of buildings with a second order polynomial for the independent variable air temperature can increase the accuracy of predicted long-term emission values for regions with pronounced seasonal temperature fluctuations