Search Results

Now showing 1 - 2 of 2
  • Item
    Methane emissions from the storage of liquid dairy manure: Influences of season, temperature and storage duration
    (Amsterdam [u.a.] : Elsevier, 2021) Cárdenas, Aura; Ammon, Christian; Schumacher, Britt; Stinner, Walter; Herrmann, Christiane; Schneider, Marcel; Weinrich, Sören; Fischer, Peter; Amon, Thomas; Amon, Barbara
    Methane emissions from livestock manure are primary contributors to GHG emissions from agriculture and options for their mitigation must be found. This paper presents the results of a study on methane emissions from stored liquid dairy cow manure during summer and winter storage periods. Manure from the summer and winter season was stored under controlled conditions in barrels at ambient temperature to simulate manure storage conditions. Methane emissions from the manure samples from the winter season were measured in two time periods: 0 to 69 and 0 to 139 days. For the summer storage period, the experiments covered four time periods: from 0 to 70, 0 to 138, 0 to 209, and 0 to 279 continuous days, with probing every 10 weeks. Additionally, at the end of all storage experiments, samples were placed into eudiometer batch digesters, and their methane emissions were measured at 20 °C for another 60 days to investigate the potential effect of the aging of the liquid manure on its methane emissions. The experiment showed that the methane emissions from manure stored in summer were considerably higher than those from manure stored in winter. CH4 production started after approximately one month, reaching values of 0.061 kg CH4 kg−1 Volatile Solid (VS) and achieving high total emissions of 0.148 kg CH4 kg−1 VS (40 weeks). In winter, the highest emissions level was 0.0011 kg CH4 kg−1 VS (20 weeks). The outcomes of these experimental measurements can be used to suggest strategies for mitigating methane emissions from manure storage.
  • Item
    Measures to increase the nitrogen use efficiency of European agricultural production
    (Amsterdam [u.a.] : Elsevier, 2020) Hutchings, Nicholas J.; Sørensen, Peter; Cordovil, Cláudia M.d.S.; Leip, Adrian; Amon, Barbara
    Inputs of nitrogen to agricultural production systems are necessary to produce food, feed and fibre, but nitrogen (N) losses from those systems represent a waste of a resource and a threat to both the environment and human health. The nitrogen use efficiency (NUE) of an agricultural production system can be seen as an indicator of the balance between benefits and costs of primary food, feed and fibre production. Here, we used modelling to follow the fate of the virgin N input to different production systems (ruminant and granivore meat, dairy, arable), and to estimate their NUE at the system scale. We defined two ruminant meat production systems, depending on whether the land places constraints on farming practices. The other production systems were dairy, granivore and arable production on land without constraints. Two geographic regions were considered: Northern and Southern Europe. Measures to improve NUE were identified and allocated to Low, Medium and High ambition groups, with Low equating to the current situation in Europe for production systems that are broadly following good agricultural practice. The NUE of the production systems was similar to or higher in Southern than Northern Europe, with the maximum technical NUEs if all available measures are implemented were for North and South Europe, respectively, 82% and 92% for arable systems, 71% and 80% for granivores, 50% and 36% for ruminant meat production on constrained land, 53% and 55% for dairy production on unconstrained land and 46% and 62% for ruminant meat production on unconstrained land. The values for NUE found here tend to be higher than reported elsewhere, possibly due to the accounting for long-term residual effects of fertiliser and manure in our method. The greatest increase in NUE with the progressive implementation of higher ambition measures was in unconstrained granivore systems and the least was in constrained ruminant meat systems, reflecting the lower initial NUE of granivore systems and the larger number of measures applicable to confined livestock systems. Our work supports use of NUE as an indicator of the temporal trend in the costs and benefits of existing agricultural production systems, but highlights problems associated with its use as a sustainability criteria for livestock production systems. For arable systems, we consider well-founded the NUE value of 90% above which there is a high risk of soil N depletion, provided many measures to increase NUE are employed. For systems employing fewer measures, we suggest a value of 70% would be more appropriate. We conclude that while it is feasible to calculate the NUE of livestock production systems, the additional complexity required reduces its value as an indicator for benchmarking sustainability in practical agriculture. © 2020 The Authors