Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Particulate matter emissions during field application of poultry manure - The influence of moisture content and treatment

2021, Kabelitz, Tina, Biniasch, Oliver, Ammon, Christian, NĂ¼bel, Ulrich, Thiel, Nadine, Janke, David, Swaminathan, Senthilathiban, Funk, Roger, MĂ¼nch, Steffen, Rösler, Uwe, Siller, Paul, Amon, Barbara, Aarnink, AndrĂ© J. A., Amon, Thomas

Along with industry and transportation, agriculture is one of the main sources of primary particulate matter (PM) emissions worldwide. Bioaerosol formation and PM release during livestock manure field application and the associated threats to environmental and human health are rarely investigated. In the temperate climate zone, field fertilization with manure seasonally contributes to local PM air pollution regularly twice per year (spring and autumn). Measurements in a wind tunnel, in the field and computational fluid dynamics (CFD) simulations were performed to analyze PM aerosolization during poultry manure application and the influence of manure moisture content and treatment. A positive correlation between manure dry matter content (DM) and PM release was observed. Therefore, treatments strongly increasing the DM of poultry manure should be avoided. However, high manure DM led to reduced microbial abundance and, therefore, to a lower risk of environmental pathogen dispersion. Considering the findings of PM and microbial measurements, the optimal poultry manure DM range for field fertilization was identified as 50–70%. Maximum PM10 concentrations of approx. 10 mg per m3 of air were measured during the spreading of dried manure (DM 80%), a concentration that is classified as strongly harmful. The modeling of PM aerosolization processes indicated a low health risk beyond a distance of 400 m from the manure application source. The detailed knowledge about PM aerosolization during manure field application was improved with this study, enabling manure management optimization for lower PM aerosolization and pathogenic release into the environment.

Loading...
Thumbnail Image
Item

The Role of Streptococcus spp. in Bovine Mastitis

2021, Kabelitz, Tina, Aubry, Etienne, van Vorst, Kira, Amon, Thomas, Fulde, Marcus

The Streptococcus genus belongs to one of the major pathogen groups inducing bovine mastitis. In the dairy industry, mastitis is the most common and costly disease. It not only negatively impacts economic profit due to milk losses and therapy costs, but it is an important animal health and welfare issue as well. This review describes a classification, reservoirs, and frequencies of the most relevant Streptococcus species inducing bovine mastitis (S. agalactiae, S. dysgalactiae and S. uberis). Host and environmental factors influencing mastitis susceptibility and infection rates will be discussed, because it has been indicated that Streptococcus herd prevalence is much higher than mastitis rates. After infection, we report the sequence of cow immune reactions and differences in virulence factors of the main Streptococcus species. Different mastitis detection techniques together with possible conventional and alternative therapies are described. The standard approach treating streptococcal mastitis is the application of ĂŸ-lactam antibiotics. In streptococci, increased antimicrobial resistance rates were identified against enrofloxacin, tetracycline, and erythromycin. At the end, control and prevention measures will be considered, including vaccination, hygiene plan, and further interventions. It is the aim of this review to estimate the contribution and to provide detailed knowledge about the role of the Streptococcus genus in bovine mastitis.