Search Results

Now showing 1 - 2 of 2
  • Item
    Opening Size E ects on Airflow Pattern and Airflow Rate of a Naturally Ventilated Dairy Building : A CFD Study
    (Basel : MDPI, 2020) Saha, Chayan Kumer; Yi, Qianying; Janke, David; Hempel, Sabrina; Amon, Barbara; Amon, Thomas
    Airflow inside naturally ventilated dairy (NVD) buildings is highly variable and difficult to understand due to the lack of precious measuring techniques with the existing methods. Computational fluid dynamics (CFD) was applied to investigate the effect of different seasonal opening combinations of an NVD building on airflow patterns and airflow rate inside the NVD building as an alternative to full scale and scale model experiments. ANSYS 2019R2 was used for creating model geometry, meshing, and simulation. Eight ventilation opening combinations and 10 different reference air velocities were used for the series of simulation. The data measured in a large boundary layer wind tunnel using a 1:100 scale model of the NVD building was used for CFD model validation. The results show that CFD using standard k-ε turbulence model was capable of simulating airflow in and outside of the NVD building. Airflow patterns were different for different opening scenarios at the same external wind speed, which may affect cow comfort and gaseous emissions. Guiding inlet air by controlling openings may ensure animal comfort and minimize emissions. Non-isothermal and transient simulations of NVD buildings should be carried out for better understanding of airflow patterns.
  • Item
    On Finding the Right Sampling Line Height through a Parametric Study of Gas Dispersion in a NVB
    (Basel : MDPI, 2021) Doumbia, E. Moustapha; Janke, David; Yi, Qianying; Zhang, Guoqiang; Amon, Thomas; Kriegel, Martin; Hempel, Sabrina
    The tracer gas method is one of the common ways to evaluate the air exchange rate in a naturally ventilated barn. One crucial condition for the accuracy of the method is that both considered gases (pollutant and tracer) are perfectly mixed at the points where the measurements are done. In the present study, by means of computational fluids dynamics (CFD), the mixing ratio NH3/CO2 is evaluated inside a barn in order to assess under which flow conditions the common height recommendation guidelines for sampling points (sampling line and sampling net) of the tracer gas method are most valuable. Our CFD model considered a barn with a rectangular layout and four animal-occupied zones modeled as a porous medium representing pressure drop and heat entry from lying and standing cows. We studied three inflow angles and six combinations of air inlet wind speed and temperatures gradients covering the three types of convection, i.e., natural, mixed, and forced. Our results showed that few cases corresponded to a nearly perfect gas mixing ratio at the currently common recommendation of at least a 3 m measurement height, while the best height in fact lied between 1.5 m and 2.5 m for most cases.