Search Results

Now showing 1 - 3 of 3
  • Item
    PS-BBICS: Pulse stretching bulk built-in current sensor for on-chip measurement of single event transients
    (Amsterdam [u.a.] : Elsevier, 2022) Andjelkovic, Marko; Marjanovic, Milos; Chen, Junchao; Ilic, Stefan; Ristic, Goran; Krstic, Milos
    The bulk built-in current sensor (BBICS) is a cost-effective solution for detection of energetic particle strikes in integrated circuits. With an appropriate number of BBICSs distributed across the chip, the soft error locations can be identified, and the dynamic fault-tolerant mechanisms can be activated locally to correct the soft errors in the affected logic. In this work, we introduce a pulse stretching BBICS (PS-BBICS) constructed by connecting a standard BBICS and a custom-designed pulse stretching cell. The aim of PS-BBICS is to enable the on-chip measurement of the single event transient (SET) pulse width, allowing to detect the linear energy transfer (LET) of incident particles, and thus assess more accurately the radiation conditions. Based on Spectre simulations, we have shown that for the LET from 1 to 100 MeV cm2 mg−1, the SET pulse width detected by PS-BBICS varies by 620–800 ps. The threshold LET of PS-BBICS increases linearly with the number of monitored inverters, and it is around 1.7 MeV cm2 mg−1 for ten monitored inverters. On the other hand, the SET pulse width is independent of the number of monitored inverters for LET > 4 MeV cm2 mg−1. It was shown that supply voltage, temperature and process variations have strong impact on the response of PS-BBICS.
  • Item
    Analysis of Single Event Transient Effects in Standard Delay Cells Based on Decoupling Capacitors
    (Singapore [u.a.] : World Scientific, 2022) Andjelkovic, Marko; Marjanovic, Milos; Drasko, Bojan; Calligaro, Cristiano; Schrape, Oliver; Gatti, Umberto; Kuentzer, Felipe A.; Ilic, Stefan; Ristic, Goran; Krstic, Milos
    Single Event Transients (SETs), i.e., voltage glitches induced in combinational logic as a result of the passage of energetic particles, represent an increasingly critical reliability threat for modern complementary metal oxide semiconductor (CMOS) integrated circuits (ICs) employed in space missions. In rad-hard ICs implemented with standard digital cells, special design techniques should be applied to reduce the Soft Error Rate (SER) due to SETs. To this end, it is essential to consider the SET robustness of individual standard cells. Among the wide range of logic cells available in standard cell libraries, the standard delay cells (SDCs) implemented with the skew-sized inverters are exceptionally vulnerable to SETs. Namely, the SET pulses induced in these cells may be hundreds of picoseconds longer than those in other standard cells. In this work, an alternative design of a SDC based on two inverters and two decoupling capacitors is introduced. Electrical simulations have shown that the propagation delay and SET robustness of the proposed delay cell are strongly influenced by the transistor sizes and supply voltage, while the impact of temperature is moderate. The proposed design is more tolerant to SETs than the SDCs with skew-sized inverters, and occupies less area compared to the hardening configurations based on partial and complete duplication. Due to the low transistor count (only six transistors), the proposed delay cell could also be used as a SET filter.
  • Item
    Design and Evaluation of Radiation-Hardened Standard Cell Flip-Flops
    (New York, NY : Institute of Electrical and Electronics Engineers, 2021) Schrape, Oliver; Andjelkovic, Marko; Breitenreiter, Anselm; Zeidler, Steffen; Balashov, Alexey; Krstic, Milos
    Use of a standard non-rad-hard digital cell library in the rad-hard design can be a cost-effective solution for space applications. In this paper we demonstrate how a standard non-rad-hard flip-flop, as one of the most vulnerable digital cells, can be converted into a rad-hard flip-flop without modifying its internal structure. We present five variants of a Triple Modular Redundancy (TMR) flip-flop: baseline TMR flip-flop, latch-based TMR flip-flop, True-Single Phase Clock (TSPC) TMR flip-flop, scannable TMR flip-flop and self-correcting TMR flip-flop. For all variants, the multi-bit upsets have been addressed by applying special placement constraints, while the Single Event Transient (SET) mitigation was achieved through the usage of customized SET filters and selection of optimal inverter sizes for the clock and reset trees. The proposed flip-flop variants feature differing performance, thus enabling to choose the optimal solution for every sensitive node in the circuit, according to the predefined design constraints. Several flip-flop designs have been validated on IHP’s 130nm BiCMOS process, by irradiation of custom-designed shift registers. It has been shown that the proposed TMR flip-flops are robust to soft errors with a threshold Linear Energy Transfer (LET) from ( 32.4 (MeV⋅cm2/mg) ) to ( 62.5 (MeV⋅cm2/mg) ), depending on the variant.