Search Results

Now showing 1 - 1 of 1
  • Item
    ParMooN - a modernized program package based on mapped finite elements
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Wilbrandt, Ulrich; Bartsch, Clemens; Ahmed, Naveed; Alia, Najib; Anker, Felix; Blank, Laura; Caiazzo, Alfonso; Ganesa, Sashikumaar; Giere, Swetlana; Matthies, Gunar; Meesala, Raviteja; Shamim, Abdus; Venkatesan, Jagannath; John, Volker
    PARMOON is a program package for the numerical solution of elliptic and parabolic partial differential equations. It inherits the distinct features of its predecessor MOONMD [28]: strict decoupling of geometry and finite element spaces, implementation of mapped finite elements as their definition can be found in textbooks, and a geometric multigrid preconditioner with the option to use different finite element spaces on different levels of the multigrid hierarchy. After having presented some thoughts about in-house research codes, this paper focuses on aspects of the parallelization, which is the main novelty of PARMOON. Numerical studies, performed on compute servers, assess the efficiency of the parallelized geometric multigrid preconditioner in comparison with parallel solvers that are available in external libraries. The results of these studies give a first indication whether the cumbersome implementation of the parallelized geometric multigrid method was worthwhile or not.