Search Results

Now showing 1 - 2 of 2
  • Item
    Wildfire smoke, Arctic haze, and aerosol effects on mixed-phase and cirrus clouds over the North Pole region during MOSAiC: an introduction
    (Katlenburg-Lindau : European Geosciences Union, 2021) Engelmann, Ronny; Ansmann, Albert; Ohneiser, Kevin; Griesche, Hannes; Radenz, Martin; Hofer, Julian; Althausen, Dietrich; Dahlke, Sandro; Maturilli, Marion; Veselovskii, Igor; Jimenez, Cristofer; Wiesen, Robert; Baars, Holger; Bühl, Johannes; Gebauer, Henriette; Haarig, Moritz; Seifert, Patric; Wandinger, Ulla; Macke, Andreas
    An advanced multiwavelength polarization Raman lidar was operated aboard the icebreaker Polarstern during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition to continuously monitor aerosol and cloud layers in the central Arctic up to 30gkm height. The expedition lasted from September 2019 to October 2020 and measurements were mostly taken between 85 and 88.5ggN. The lidar was integrated into a complex remote-sensing infrastructure aboard the Polarstern. In this article, novel lidar techniques, innovative concepts to study aerosol-cloud interaction in the Arctic, and unique MOSAiC findings will be presented. The highlight of the lidar measurements was the detection of a 10gkm deep wildfire smoke layer over the North Pole region between 7-8gkm and 17-18gkm height with an aerosol optical thickness (AOT) at 532gnm of around 0.1 (in October-November 2019) and 0.05 from December to March. The dual-wavelength Raman lidar technique allowed us to unambiguously identify smoke as the dominating aerosol type in the aerosol layer in the upper troposphere and lower stratosphere (UTLS). An additional contribution to the 532gnm AOT by volcanic sulfate aerosol (Raikoke eruption) was estimated to always be lower than 15g%. The optical and microphysical properties of the UTLS smoke layer are presented in an accompanying paper . This smoke event offered the unique opportunity to study the influence of organic aerosol particles (serving as ice-nucleating particles, INPs) on cirrus formation in the upper troposphere. An example of a closure study is presented to explain our concept of investigating aerosol-cloud interaction in this field. The smoke particles were obviously able to control the evolution of the cirrus system and caused low ice crystal number concentration. After the discussion of two typical Arctic haze events, we present a case study of the evolution of a long-lasting mixed-phase cloud layer embedded in Arctic haze in the free troposphere. The recently introduced dual-field-of-view polarization lidar technique was applied, for the first time, to mixed-phase cloud observations in order to determine the microphysical properties of the water droplets. The mixed-phase cloud closure experiment (based on combined lidar and radar observations) indicated that the observed aerosol levels controlled the number concentrations of nucleated droplets and ice crystals.
  • Item
    Smoke of extreme Australian bushfires observed in the stratosphere over Punta Arenas, Chile, in January 2020 : optical thickness, lidar ratios, and depolarization ratios at 355 and 532nm
    (Katlenburg-Lindau : EGU, 2020) Ohneiser, Kevin; Ansmann, Albert; Baars, Holger; Seifert, Patric; Barja, Boris; Jimenez, Cristofer; Radenz, Martin; Teisseire, Audrey; Floutsi, Athina; Haarig, Moritz; Foth, Andreas; Chudnovsky, Alexandra; Engelmann, Ronny; Zamorano, Félix; Bühl, Johannes; Wandinger, Ulla
    We present particle optical properties of stratospheric smoke layers observed with multiwavelength polarization Raman lidar over Punta Arenas (53.2∘ S, 70.9∘ W), Chile, at the southernmost tip of South America in January 2020. The smoke originated from the record-breaking bushfires in Australia. The stratospheric aerosol optical thickness reached values up to 0.85 at 532 nm in mid-January 2020. The main goal of this rapid communication letter is to provide first stratospheric measurements of smoke extinction-to-backscatter ratios (lidar ratios) and particle linear depolarization ratios at 355 and 532 nm wavelengths. These aerosol parameters are important input parameters in the analysis of spaceborne CALIPSO and Aeolus lidar observations of the Australian smoke spreading over large parts of the Southern Hemisphere in January and February 2020 up to heights of around 30 km. Lidar and depolarization ratios, simultaneously measured at 355 and 532 nm, are of key importance regarding the homogenization of the overall Aeolus (355 nm wavelength) and CALIPSO (532 nm wavelength) lidar data sets documenting the spread of the smoke and the decay of the stratospheric perturbation, which will be observable over the entire year of 2020. We found typical values and spectral dependencies of the lidar ratio and linear depolarization ratio for aged stratospheric smoke. At 355 nm, the lidar ratio and depolarization ratio ranged from 53 to 97 sr (mean 71 sr) and 0.2 to 0.26 (mean 0.23), respectively. At 532 nm, the lidar ratios were higher (75–112 sr, mean 97 sr) and the depolarization ratios were lower with values of 0.14–0.22 (mean 0.18). The determined depolarization ratios for aged Australian smoke are in very good agreement with respective ones for aged Canadian smoke, observed with lidar in stratospheric smoke layers over central Europe in the summer of 2017. The much higher 532 nm lidar ratios, however, indicate stronger absorption by the Australian smoke particles.