Search Results

Now showing 1 - 10 of 13
  • Item
    Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Freudenthaler, Volker; Esselborn, Michael; Wiegner, Matthias; Heese, Birgit; Tesche, Matthias; Ansmann, Albert; Müller, Detlef; Althausen, Dietrich; Wirth, Martin; Fix, Andreas; Ehret, Gerhard; Knippertz, Peter; Toledano, Carlos; Gasteiger, Josef; Garhammer, Markus; Seefeldner, Meinhard
    Vertical profiles of the linear particle depolarization ratio of pure dust clouds were measured during the Saharan Mineral Dust Experiment (SAMUM) at Ouarzazate, Morocco (30.9◦N, –6.9◦E), close to source regions in May–June 2006, with four lidar systems at four wavelengths (355, 532, 710 and 1064 nm). The intercomparison of the lidar systems is accompanied by a discussion of the different calibration methods, including a new, advanced method, and a detailed error analysis. Over the whole SAMUM periode pure dust layers show a mean linear particle depolarization ratio at 532 nm of 0.31, in the range between 0.27 and 0.35, with a mean Ångström exponent (AE, 440–870 nm) of 0.18 (range 0.04–0.34) and still high mean linear particle depolarization ratio between 0.21 and 0.25 during periods with aerosol optical thickness less than 0.1, with a mean AE of 0.76 (range 0.65–1.00), which represents a negative correlation of the linear particle depolarization ratio with the AE. A slight decrease of the linear particle depolarization ratio with wavelength was found between 532 and 1064 nm from 0.31 ± 0.03 to 0.27 ± 0.04.
  • Item
    Saharan dust contribution to the Caribbean summertime boundary layer - A lidar study during SALTRACE
    (München : European Geopyhsical Union, 2016) Groß, Silke; Gasteiger, Josef; Freudenthaler, Volker; Müller, Thomas; Sauer, Daniel; Toledano, Carlos; Ansmann, Albert
    Dual-wavelength lidar measurements with the small lidar system POLIS of the Ludwig-Maximilians-Universität München were performed during the SALTRACE experiment at Barbados in June and July 2013. Based on high-accuracy measurements of the linear depolarization ratio down to about 200 m above ground level, the dust volume fraction and the dust mass concentration within the convective marine boundary layer can be derived. Additional information from radiosonde launches at the ground-based measurement site provide independent information on the convective marine boundary layer height and the meteorological situation within the convective marine boundary layer. We investigate the lidar-derived optical properties, the lidar ratio and the particle linear depolarization ratio at 355 and 532 nm and find mean values of 0.04 (SD 0.03) and 0.05 (SD 0.04) at 355 and 532 nm, respectively, for the particle linear depolarization ratio, and (26 ± 5) sr for the lidar ratio at 355 and 532 nm. For the concentration of dust in the convective marine boundary layer we find that most values were between 20 and 50 µgm−3. On most days the dust contribution to total aerosol volume was about 30–40 %. Comparing the dust contribution to the column-integrated sun-photometer measurements we see a correlation between high dust contribution, high total aerosol optical depth and a low Angström exponent, and of low dust contribution with low total aerosol optical depth.
  • Item
    Doppler lidar studies of heat island effects on vertical mixing of aerosols during SAMUM-2
    (Milton Park : Taylor & Francis, 2017) Engelmann, Ronny; Ansmann, Albert; Horn, Stefan; Seifert, Patric; Althausen, Dietrich; Tesche, Matthias; Esselborn, Michael; Fruntke, Julia; Lieke, Kirsten; Freudenthaler, Volker; Gross, Silke
    A wind Doppler lidar was deployed next to three aerosol lidars during the SAMUM–2 campaign on the main island of Cape Verde. The effects of the differential heating of the island and the surrounding ocean and the orographic impact of the capital island Santiago and the small island on its luv side, Maio, are investigated. Horizontal and vertical winds were measured in the disturbed maritime boundary layer and compared to local radiosoundings. Lidar measurements from the research aircraft Falcon and a 3-D Large Eddy Simulation (LES) model were used in addition to study the heating effects on the scale of the islands. Indications are found that these effects can widely control the downward mixing from greater heights to the surface of African aerosols, mainly Saharan dust and biomass-burning smoke, which were detected in a complex layering over the Cape Verde region.
  • Item
    Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements
    (Milton Park : Taylor & Francis, 2017) Tesche, Matthias; Müller, Detlef; Gross, Silke; Ansmann, Albert; Althausen, Dietrich; Freudenthaler, Volker; Weinzierl, Bernadett; Veira, Andreas; Petzold, Andreas
    Lidar measurements of mixed dust/smoke plumes over the tropical Atlantic ocean were carried out during the winter campaign of SAMUM-2 at Cape Verde. Profiles of backscatter and extinction coefficients, lidar ratios, and Ångstr¨om exponents related to pure biomass-burning aerosol from southern West Africa were extracted from these observations. Furthermore, these findings were used as input for an inversion algorithm to retrieve microphysical properties of pure smoke. Seven measurement days were found suitable for the procedure of aerosol-type separation and successive inversion of optical data that describe biomass-burning smoke. We inferred high smoke lidar ratios of 87 ± 17 sr at 355 nm and 79 ± 17 sr at 532 nm. Smoke lidar ratios and Ångstr¨om exponents are higher compared to the ones for the dust/smoke mixture. These numbers indicate higher absorption and smaller sizes for pure smoke particles compared to the dust/smoke mixture. Inversion of the smoke data set results in mean effective radii of 0.22 ± 0.08 μm with individual results varying between 0.10 and 0.36 μm. The single-scattering albedo for pure biomass-burning smoke was found to vary between 0.63 and 0.89 with a very low mean value of 0.75 ± 0.07. This is in good agreement with findings of airborne in situ measurements which showed values of 0.77 ± 0.03. Effective radii from the inversion were similar to the ones found for the fine mode of the in situ size distributions.
  • Item
    Potential of polarization/Raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles
    (München : European Geopyhsical Union, 2017) Mamouri, Rodanthi-Elisavet; Ansmann, Albert
    We applied the recently introduced polarization lidar–photometer networking (POLIPHON) technique for the first time to triple-wavelength polarization lidar measurements at 355, 532, and 1064 nm. The lidar observations were performed at Barbados during the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in the summer of 2014. The POLIPHON method comprises the traditional lidar technique to separate mineral dust and non-dust backscatter contributions and the new, extended approach to separate even the fine and coarse dust backscatter fractions. We show that the traditional and the advanced method are compatible and lead to a consistent set of dust and non-dust profiles at simplified, less complex aerosol layering and mixing conditions as is the case over the remote tropical Atlantic. To derive dust mass concentration profiles from the lidar observations, trustworthy extinction-to-volume conversion factors for fine, coarse, and total dust are needed and obtained from an updated, extended Aerosol Robotic Network sun photometer data analysis of the correlation between the fine, coarse and total dust volume concentration and the respective fine, coarse, and total dust extinction coefficient for all three laser wavelengths. Conversion factors (total volume to extinction) for pure marine aerosol conditions and continental anthropogenic aerosol situations are presented in addition. As a new feature of the POLIPHON data analysis, the Raman lidar method for particle extinction profiling is used to identify the aerosol type (marine or anthropogenic) of the non-dust aerosol fraction. The full POLIPHON methodology was successfully applied to a SALTRACE case and the results are discussed. We conclude that the 532 nm polarization lidar technique has many advantages in comparison to 355 and 1064 nm polarization lidar approaches and leads to the most robust and accurate POLIPHON products.
  • Item
    Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: What have we learned?
    (Milton Park : Taylor & Francis, 2011) Ansmann, Albert; Petzold, Andreas; Kandler, Konrad; Tegen, Ina; Wendisch, Manfred; Müller, Detlef; Weinzierl, Bernadett; Müller, Thomas; Heintzenberg, Jost
    Two comprehensive field campaigns were conducted in 2006 and 2008 in the framework of the Saharan Mineral Dust Experiment (SAMUM) project. The relationship between chemical composition, shape morphology, size distribution and optical effects of the dust particles was investigated. The impact of Saharan dust on radiative transfer and the feedback of radiative effects upon dust emission and aerosol transport were studied. Field observations (ground-based, airborne and remote sensing) and modelling results were compared within a variety of dust closure experiments with a strong focus on vertical profiling. For the first time, multiwavelength Raman/polarization lidars and an airborne high spectral resolution lidar were involved in major dust field campaigns and provided profiles of the volume extinction coefficient of the particles at ambient conditions (for the full dust size distribution), of particle-shape-sensitive optical properties at several wavelengths, and a clear separation of dust and smoke profiles allowing for an estimation of the single-scattering albedo of the biomass-burning aerosol. SAMUM–1 took place in southern Morocco close to the Saharan desert in the summer of 2006, whereas SAMUM–2 was conducted in Cape Verde in the outflow region of desert dust and biomass-burning smoke from western Africa in the winter of 2008. This paper gives an overview of the SAMUM concept, strategy and goals, provides snapshots (highlights) of SAMUM–2 observations and modelling efforts, summarizes main findings of SAMUM–1 and SAMUM–2 and finally presents a list of remaining problems and unsolved questions.
  • Item
    Characterization of the planetary boundary layer during SAMUM-2 by means of lidar measurements
    (Milton Park : Taylor & Francis, 2017) Groß, Silke; Gasteiger, Josef; Freudenthaler, Volker; Wiegner, Matthias; Geiß, Alexander; Schladitz, Alexander; Toledano, Carlos; Kandler, Konrad; Tesche, Matthias; Ansmann, Albert; Wiedensohler, Alfred
    Measurements with two Raman-depolarization lidars of the Meteorological Institute of the Ludwig-Maximilians- Universit¨at, M¨unchen, Germany, performed during SAMUM-2, were used to characterize the planetary boundary layer (PBL) over Praia, Cape Verde. A novel approach was used to determine the volume fraction of dust υd in the PBL. This approach primarily relies on accurate measurements of the linear depolarization ratio. Comparisons with independent in situ measurements showed the reliability of this approach. Based on our retrievals, two different phases could be distinguished within the measurement period of almost one month. The first (22–31 January 2008) was characterized by high aerosol optical depth (AOD) in the PBL and large υd > 95%. During the second phase, the AOD in the PBL was considerably lower and υd less than ∼40%. These findings were in very good agreement with ground based in situ measurements, when ambient volume fractions are considered that were calculated from the actual measurements of the dry volume fraction. Only in cases when dust was not the dominating aerosol component (second phase), effects due to hygroscopic growth became important.
  • Item
    Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM
    (Milton Park : Taylor & Francis, 2017) Tesche, Matthias; Ansmann, Albert; MüLLER, Detlef; Althausen, Dietrich; Mattis, Ina; Heese, Birgit; Freudenthaler, Volker; Wiegner, Matthias; Esselborn, Michael; Pisani, Gianluca; Knippertz, Peter
    Three ground-based Raman lidars and an airborne high-spectral-resolution lidar (HSRL) were operated duringSAMUM 2006 in southern Morocco to measure height profiles of the volume extinction coefficient, the extinction-to-backscatter ratio and the depolarization ratio of dust particles in the Saharan dust layer at several wavelengths. Aerosol Robotic Network (AERONET) Sun photometer observations and radiosoundings of meteorological parameters complemented the ground-based activities at the SAMUM station of Ouarzazate. Four case studies are presented. Two case studies deal with the comparison of observations of the three ground-based lidars during a heavy dust outbreak and of the ground-based lidars with the airborne lidar. Two further cases show profile observations during satellite overpasses on 19 May and 4 June 2006. The height resolved statistical analysis reveals that the dust layer top typically reaches 4–6 km height above sea level (a.s.l.), sometimes even 7 km a.s.l.. Usually, a vertically inhomogeneous dust plume with internal dust layers was observed in the morning before the evolution of the boundary layer started. The Saharan dust layer was well mixed in the early evening. The 500 nm dust optical depth ranged from 0.2–0.8 at the field site south of the High Atlas mountains, Ångström exponents derived from photometer and lidar data were between 0–0.4. The volume extinction coefficients (355, 532 nm) varied from 30–300Mm−1 with a mean value of 100Mm−1 in the lowest 4 km a.s.l.. On average, extinction-to-backscatter ratios of 53–55 sr (±7–13 sr) were obtained at 355, 532 and 1064 nm.
  • Item
    Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2
    (Milton Park : Taylor & Francis, 2017) Groß, Silke; Tesche, Matthias; Freudenthaler, Volker; Toledano, Carlos; Wiegner, Matthias; Ansmann, Albert; Althausen, Dietrich; Seefeldner, Meinhard
    The particle linear depolarization ratio δp of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols from southern West Africa and Saharan dust was determined at three wavelengths with three lidar systems during the SAharan Mineral dUst experiMent 2 at the airport of Praia, Cape Verde, between 22 January and 9 February 2008. The lidar ratio Sp of these major types of tropospheric aerosols was analysed at two wavelengths. For Saharan dust, we find wavelength dependent mean particle linear depolarization ratios δp of 0.24–0.27 at 355 nm, 0.29–0.31 at 532 nm and 0.36–0.40 at 710 nm, and wavelength independent mean lidar ratios Sp of 48–70 sr. Mixtures of biomass-burning aerosols and dust show wavelength independent values of δp and Sp between 0.12–0.23 and 57–98 sr, respectively. The mean values of marine aerosols range independent of wavelength for δp from 0.01 to 0.03 and for Sp from 14 to 24 sr.
  • Item
    Regional modelling of Saharan dust and biomass-burning smoke, Part I: Model description and evaluation
    (Milton Park : Taylor & Francis, 2017) Heinold, Bernd; Tegen, Ina; Schepanski, Kerstin; Tesche, Matthias; Esselborn, Michael; Freudenthaler, Volker; Gross, Silke; Kandler, Konrad; Knippertz, Peter; Müller, Detlef; Schladitz, Alexander; Toledano, Carlos; Weinzierl, Bernadett; Ansmann, Albert; Althausen, Dietrich; Müller, Thomas; Petzold, Andreas; Wiedensohler, Alfred
    The spatio-temporal evolution of the Saharan dust and biomass-burning plume during the SAMUM-2 field campaign in January and February 2008 is simulated at 28 km horizontal resolution with the regional model-system COSMOMUSCAT. The model performance is thoroughly tested using routine ground-based and space-borne remote sensing and local field measurements. Good agreement with the observations is found in many cases regarding transport patterns, aerosol optical thicknesses and the ratio of dust to smoke aerosol. The model also captures major features of the complex aerosol layering. Nevertheless, discrepancies in the modelled aerosol distribution occur, which are analysed in detail. The dry synoptic dynamics controlling dust uplift and transport during the dry season are well described by the model, but surface wind peaks associated with the breakdown of nocturnal low-level jets are not always reproduced. Thus, a strong dust outbreak is underestimated. While dust emission modelling is a priori more challenging, since strength and placement of dust sources depend on on-line computed winds, considerable inaccuracies also arise in observation-based estimates of biomass-burning emissions. They are caused by cloud and spatial errors of satellite fire products and uncertainties in fire emission parameters, and can lead to unrealistic model results of smoke transport.