Search Results

Now showing 1 - 10 of 13
Loading...
Thumbnail Image
Item

Mineral dust in central Asia: 18-month lidar measurements in Tajikistan during the central Asian dust experiment (CADEX)

2018, Hofer, Julian, Althausen, Dietrich, Abdullaev, Sabur F., Makhmudov, Abduvosit, Nazarov, Bakhron I., Schettler, Georg, Fomba, K.Wadinga, Müller, Konrad, Heinold, Bernd, Baars, Holger, Engelmann, Ronny, Ansmann, Albert, Nicolae, D., Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F., Landulfo, E., McCormick, M.P., Senff, C., Veselovskii, I., Wandinger, U.

Tajikistan is often affected by atmospheric mineral dust. The direct and indirect radiative effects of dust play a sensitive role in the climate system in Central Asia. The Central Asian Dust Experiment (CADEX) provides first lidar measurements in Tajikistan. The autonomous multiwavelength polarization Raman lidar PollyXT was operated for 1.5 years (2015/16) in Dushanbe. In spring, lofted layers of long-range transported dust and in summer/ autumn, lower laying dust from local or regional sources with large optical thicknesses occurred.

Loading...
Thumbnail Image
Item

Triple-wavelength lidar observations of the linear depolarization ratio of dried marine particles

2018, Haarig, Moritz, Ansmann, Albert, Baars, Holger, Engelmann, Ronny, Althausen, Dietrich, Bohlmann, Stephanie, Gasteiger, Josef, Farrell, David, Nicolae, D., Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F., Landulfo, E., McCormick, M.P., Senff, C., Veselovskii, I., Wandinger, U.

For aerosol typing with lidar, sea salt particles are usually assumed to be spherical with a consequently low depolarization ratio. Evidence of dried marine particles at the top of the humid marine aerosol layer with a depolarization ratio up to 0.1 has been found at predominately maritime locations on Barbados and in the Southern Atlantic. The depolarization ratio for these probably cubic sea salt particles has been measured at three wavelengths (355, 532 and 1064 nm) simultaneously for the first time and compared to model simulations.

Loading...
Thumbnail Image
Item

Application of a multiple scattering model to estimate optical depth, lidar ratio and ice crystal effective radius of cirrus clouds observed with lidar.

2018, Gouveia, Diego, Baars, Holger, Seifert, Patric, Wandinger, Ulla, Barbosa, Henrique, Barja, Boris, Artaxo, Paulo, Lopes, Fabio, Landulfo, Eduardo, Ansmann, Albert, Nicolae, D., Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F., Landulfo, E., McCormick, M.P., Senff, C., Veselovskii, I., Wandinger, U.

Lidar measurements of cirrus clouds are highly influenced by multiple scattering (MS). We therefore developed an iterative approach to correct elastic backscatter lidar signals for multiple scattering to obtain best estimates of single-scattering cloud optical depth and lidar ratio as well as of the ice crystal effective radius. The approach is based on the exploration of the effect of MS on the molecular backscatter signal returned from above cloud top.

Loading...
Thumbnail Image
Item

PollyNET - an emerging network of automated raman-polarizarion lidars for continuous aerosolprofiling

2018, Baars, Holger, Althausen, Dietrich, Engelmann, Ronny, Heese, Birgit, Ansmann, Albert, Wandinger, Ulla, Hofer, Julian, Skupin, Annett, Komppula, Mika, Giannakaki, Eleni, Filioglou, Maria, Bortoli, Daniele, Silva, Ana Maria, Pereira, Sergio, Stachlewska, Iwona S., Kumala, Wojciech, Szczepanik, Dominika, Amiridis, Vassilis, Marinou, Eleni, Kottas, Michail, Mattis, Ina, Müller, Gerhard, Nicolae, D., Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F., Landulfo, E., McCormick, M.P., Senff, C., Veselovskii, I., Wandinger, U.

PollyNET is a network of portable, automated, and continuously measuring Ramanpolarization lidars of type Polly operated by several institutes worldwide. The data from permanent and temporary measurements sites are automatically processed in terms of optical aerosol profiles and displayed in near-real time at polly.tropos.de. According to current schedules, the network will grow by 3-4 systems during the upcoming 2-3 years and will then comprise 11 permanent stations and 2 mobile platforms.

Loading...
Thumbnail Image
Item

Study of mixed phase clouds over west Africa: Ice-crystal corner reflection effects observed with a two-wavelength polarization lidar

2018, Veselovskii, Igor, Goloub, Philippe, Podvin, Thierry, Tanre, Didier, Ansmann, Albert, Korenskiy, Michail, Borovoi, Anatoli, Hu, Qiaoyun, Bovchaliuk, Valentin, Whiteman, David N., Nicolae, D., Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F., Landulfo, E., McCormick, M.P., Senff, C., Veselovskii, I., Wandinger, U.

Lidar sounding is used for the analysis of possible contribution of the corner reflection (CR) effect to the total backscattering in case of ice crystals. Our study is based on observations of mixed phase clouds performed during the SHADOW campaign in Senegal. Mie-Raman lidar allows measurements at 355 nm and 532 nm at 43 dg. off-zenith angle, so the extinction and backscattering Ångström exponents can be evaluated. In some measurements we observed the positive values of backscattering Ångström exponent, which can be attributed to the corner reflection by horizontally oriented ice plates.

Loading...
Thumbnail Image
Item

Vertical separation of the atmospheric aerosol components by using poliphon retrieval in polarized micro pulse lidar (P-MPL) measurements: Case studies of specific climate-relevant aerosol types

2018, Córdoba-Jabonero, Carmen, Sicard, Michaël, Ansmann, Albert, del Águila, Ana, Baars, Holger, Nicolae, D., Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F., Landulfo, E., McCormick, M.P., Senff, C., Veselovskii, I., Wandinger, U.

POLIPHON (POlarization-LIdar PHOtometer Networking) retrieval consists in the vertical separation of two/three particle components in aerosol mixtures, highlighting their relative contributions in terms of the optical properties and mass concentrations. This method is based on the specific particle linear depolarization ratio given for different types of aerosols, and is applied to the new polarized Micro-Pulse Lidar (P-MPL). Case studies of specific climate-relevant aerosols (dust particles, fire smoke, and pollen aerosols, including a clean case as reference) observed over Barcelona (Spain) are presented in order to evaluate firstly the potential of P-MPLs measurements in combination with POLIPHON for retrieving the vertical separation of those particle components forming aerosol mixtures and their properties.

Loading...
Thumbnail Image
Item

Comparison between two lidar methods to retrieve microphysical properties of liquid-water clouds

2018, Jimenez, Cristofer, Ansmann, Albert, Donovan, David, Engelmann, Ronny, Schmidt, Jörg, Wandinger, Ulla, Nicolae, D., Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F., Landulfo, E., McCormick, M.P., Senff, C., Veselovskii, I., Wandinger, U.

Since 2010, the Raman dual-FOV lidar system permits the retrieval of microphysical properties of liquid-water clouds during nighttime. A new robust lidar depolarization approach was recently introduced, which permits the retrieval of these properties as well, with high temporal resolution and during daytime. To implement this approach, the lidar system was upgraded, by adding a three channel depolarization receiver. The first preliminary retrieval results and a comparison between both methods is presented.

Loading...
Thumbnail Image
Item

Lidar Ice nuclei estimates and how they relate with airborne in-situ measurements

2018, Marinou, Eleni, Amiridis, Vassilis, Ansmann, Albert, Nenes, Athanasios, Balis, Dimitris, Schrod, Jann, Binietoglou, Ioannis, Solomos, Stavros, Mamali, Dimitra, Engelmann, Ronny, Baars, Holger, Kottas, Michael, Tsekeri, Alexandra, Proestakis, Emmanouil, Kokkalis, Panagiotis, Goloub, Philippe, Cvetkovic, Bojan, Nichovic, Slobodan, Mamouri, Rodanthi, Pikridas, Michael, Stavroulas, Iasonas, Keleshis, Christos, Sciare, Jean

By means of available ice nucleating particle (INP) parameterization schemes we compute profiles of dust INP number concentration utilizing Polly-XT and CALIPSO lidar observations during the INUIT-BACCHUS-ACTRIS 2016 campaign. The polarization-lidar photometer networking (POLIPHON) method is used to separate dust and non-dust aerosol backscatter, extinction, mass concentration, particle number concentration (for particles with radius > 250 nm) and surface area concentration. The INP final products are compared with aerosol samples collected from unmanned aircraft systems (UAS) and analyzed using the ice nucleus counter FRIDGE.

Loading...
Thumbnail Image
Item

Measurements of particle backscatter, extinction, and lidar ratio at 1064 nm with the rotational raman method in Polly-XT

2018, Engelmann, Ronny, Haarig, Moritz, Baars, Holger, Ansmann, Albert, Kottas, Michael, Marinou, Eleni, Nicolae, D., Makoto, A., Vassilis, A., Balis, D., Behrendt, A., Comeron, A., Gibert, F., Landulfo, E., McCormick, M.P., Senff, C., Veselovskii, I., Wandinger, U.

We replaced a 1064-nm interference filter of a Polly-XT lidar system by a 1058-nm filter to observe pure rotational Raman backscattering from atmospheric Nitrogen and Oxygen. Polly-XT is compact Raman lidar with a Nd:YAG laser (20 Hz, 200 mJ at 1064 nm) and a 30-cm telescope mirror which applies photomultipliers in photoncounting mode. We present the first measured signals at 1058 nm and the derived extinction profile from measurements aboard RV Polarstern and in Leipzig. In combination with another Polly-XT system we could also derive particle backscatter and lidar ratio profiles at 1064 nm.

Loading...
Thumbnail Image
Item

Impact of vertical air motions on ice formation rate in mixed-phase cloud layers

2019, Bühl, Johannes, Seifert, Patric, Engelmann, Ronny, Ansmann, Albert

The relationship between vertical air velocity at cloud base and primary ice formation has been measured for shallow mixed-phase cloud layers (thickness <380 m) by means of ground-based cloud radar and Doppler lidar. For layers with a cloud-top temperature below −12 °C, an increase of vertical-velocity standard deviation from 0.1 to 1.0 m s−1 leads to an increase in the mass flux of ice water by two orders of magnitude. The cloud layers under study were selected in such a way that secondary ice-formation processes played a minor role, and primary ice formation was the dominant source of ice formation. Phenomenological parameterizations of the ice mass and the ice mass flux as functions of standard deviation of vertical air velocity are given.