Search Results

Now showing 1 - 10 of 38
  • Item
    Mehrwellenlängenlidar- und Flugzeugmessungen im Rahmen eines Aerosäulenschließungsexperiments : Schlußbericht
    (Leipzig : Leibniz-Institut für Troposphärenforschung, 2000) Ansmann, Albert; Wandinger, Ulla; Müller, Detlef; Althausen, Dietrich; Wendisch, Manfred; Keil, Andreas; Müller, Dörthe
    [no abstract available]
  • Item
    Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Freudenthaler, Volker; Esselborn, Michael; Wiegner, Matthias; Heese, Birgit; Tesche, Matthias; Ansmann, Albert; Müller, Detlef; Althausen, Dietrich; Wirth, Martin; Fix, Andreas; Ehret, Gerhard; Knippertz, Peter; Toledano, Carlos; Gasteiger, Josef; Garhammer, Markus; Seefeldner, Meinhard
    Vertical profiles of the linear particle depolarization ratio of pure dust clouds were measured during the Saharan Mineral Dust Experiment (SAMUM) at Ouarzazate, Morocco (30.9◦N, –6.9◦E), close to source regions in May–June 2006, with four lidar systems at four wavelengths (355, 532, 710 and 1064 nm). The intercomparison of the lidar systems is accompanied by a discussion of the different calibration methods, including a new, advanced method, and a detailed error analysis. Over the whole SAMUM periode pure dust layers show a mean linear particle depolarization ratio at 532 nm of 0.31, in the range between 0.27 and 0.35, with a mean Ångström exponent (AE, 440–870 nm) of 0.18 (range 0.04–0.34) and still high mean linear particle depolarization ratio between 0.21 and 0.25 during periods with aerosol optical thickness less than 0.1, with a mean AE of 0.76 (range 0.65–1.00), which represents a negative correlation of the linear particle depolarization ratio with the AE. A slight decrease of the linear particle depolarization ratio with wavelength was found between 532 and 1064 nm from 0.31 ± 0.03 to 0.27 ± 0.04.
  • Item
    Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data
    (München : European Geopyhsical Union, 2018) Dai, Guangyao; Althausen, Dietrich; Hofer, Julian; Engelmann, Ronny; Seifert, Patric; Bühl, Johannes; Mamouri, Rodanthi-Elisavet; Wu, Songhua; Ansmann, Albert
    We present a practical method to continuously calibrate Raman lidar observations of water vapor mixing ratio profiles. The water vapor profile measured with the multiwavelength polarization Raman lidar PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor from the lidar observations is used for the calibration of the lidar measurements with the sun photometer measurements. The retrieved calibrated water vapor mixing ratio from the lidar measurements has a relative uncertainty of 11 % in which the error is mainly caused by the error of the sun photometer measurements. During CyCARE, nine measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the PollyXT Raman lidar is 6.56 g kg−1 ± 0.72 g kg−1 (with a statistical uncertainty of 0.08 g kg−1 and an instrumental uncertainty of 0.72 g kg−1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full potential of a well-calibrated Raman lidar. The relative humidity profiles from lidar, GDAS (simulation) and radiosonde are compared, too. It is found that the combination of water vapor mixing ratio and GDAS temperature profiles allow us to derive relative humidity profiles with the relative uncertainty of 10–20 %.
  • Item
    Long-term profiling of aerosol light extinction, particle mass, cloud condensation nuclei, and ice-nucleating particle concentration over Dushanbe, Tajikistan, in Central Asia
    (Katlenburg-Lindau : EGU, 2020) Hofer, Julian; Ansmann, Albert; Althausen, Dietrich; Engelmann, Ronny; Baars, Holger; Abdullaev, Sabur F.; Makhmudov, Abduvosit N.
    For the first time, continuous, vertically resolved long-term aerosol measurements were conducted with a state-of-the-art multiwavelength lidar over a Central Asian site. Such observations are urgently required in efforts to predict future climate and environmental conditions and to support spaceborne remote sensing (ground truth activities). The lidar observations were performed in the framework of the Central Asian Dust Experiment (CADEX) at Dushanbe, Tajikistan, from March 2015 to August 2016. An AERONET (AErosol RObotic NETwork) sun photometer was operated at the lidar field site. During the 18-month campaign, mixtures of continental aerosol pollution and mineral dust were frequently detected from ground to cirrus height level. Regional sources of dust and pollution as well as long-range transport of mineral dust mainly from Middle Eastern and the Saharan deserts determine the aerosol conditions over Tajikistan. In this study, we summarize our findings and present seasonally resolved statistics regarding aerosol layering (main aerosol layer depth, lofted layer occurrence); optical properties (aerosol and dust optical thicknesses at 500–532 nm, vertically resolved light-extinction coefficient at 532 nm); profiles of dust and non-dust mass concentrations and dust fraction; and profiles of particle parameters relevant for liquid water, mixed-phase cloud, and cirrus formation such as cloud condensation nuclei (CCN) and ice-nucleating particle (INP) concentrations. The main aerosol layer over Dushanbe typically reaches 4–5 km height in spring to autumn. Frequently lofted dust-containing aerosol layers were observed at heights from 5 to 10 km, indicating a sensitive potential of dust to influence cloud ice formation. Typical dust mass fractions were of the order of 60 %–80 %. A considerable fraction is thus anthropogenic pollution and biomass burning smoke. The highest aerosol pollution levels (in the relatively shallow winter boundary layer) occur during the winter months. The seasonal mean 500 nm AOT (aerosol optical thickness) ranges from 0.15 in winter to 0.36 in summer during the CADEX period (March 2015 to August 2016); DOTs (dust optical thicknesses) were usually below 0.2; seasonally mean particle extinction coefficients were of the order of 100–500 Mm−1 in the main aerosol layer during the summer half year and about 100–150 Mm−1 in winter but were mainly caused by anthropogenic haze. Accordingly, the highest dust mass concentrations occurred in the summer season (200–600 µg m−3) and the lowest during the winter months (20–50 µg m−3) in the main aerosol layer. In winter, the aerosol pollution mass concentrations were 20–50 µg m−3, while during the summer half year (spring to autumn), the mass concentration caused by urban haze and biomass burning smoke decreases to 10–20 µg m−3 in the lower troposphere. The CCN concentration levels are always controlled by aerosol pollution. The INP concentrations were found to be high enough in the middle and upper troposphere to significantly influence ice formation in mixed-phase and ice clouds during spring and summer seasons.
  • Item
    Doppler lidar studies of heat island effects on vertical mixing of aerosols during SAMUM-2
    (Milton Park : Taylor & Francis, 2017) Engelmann, Ronny; Ansmann, Albert; Horn, Stefan; Seifert, Patric; Althausen, Dietrich; Tesche, Matthias; Esselborn, Michael; Fruntke, Julia; Lieke, Kirsten; Freudenthaler, Volker; Gross, Silke
    A wind Doppler lidar was deployed next to three aerosol lidars during the SAMUM–2 campaign on the main island of Cape Verde. The effects of the differential heating of the island and the surrounding ocean and the orographic impact of the capital island Santiago and the small island on its luv side, Maio, are investigated. Horizontal and vertical winds were measured in the disturbed maritime boundary layer and compared to local radiosoundings. Lidar measurements from the research aircraft Falcon and a 3-D Large Eddy Simulation (LES) model were used in addition to study the heating effects on the scale of the islands. Indications are found that these effects can widely control the downward mixing from greater heights to the surface of African aerosols, mainly Saharan dust and biomass-burning smoke, which were detected in a complex layering over the Cape Verde region.
  • Item
    Triple-wavelength lidar observations of the linear depolarization ratio of dried marine particles
    (Les Ulis : EDP Sciences, 2018) Haarig, Moritz; Ansmann, Albert; Baars, Holger; Engelmann, Ronny; Althausen, Dietrich; Bohlmann, Stephanie; Gasteiger, Josef; Farrell, David; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    For aerosol typing with lidar, sea salt particles are usually assumed to be spherical with a consequently low depolarization ratio. Evidence of dried marine particles at the top of the humid marine aerosol layer with a depolarization ratio up to 0.1 has been found at predominately maritime locations on Barbados and in the Southern Atlantic. The depolarization ratio for these probably cubic sea salt particles has been measured at three wavelengths (355, 532 and 1064 nm) simultaneously for the first time and compared to model simulations.
  • Item
    Optical and microphysical properties of smoke over Cape Verde inferred from multiwavelength lidar measurements
    (Milton Park : Taylor & Francis, 2017) Tesche, Matthias; Müller, Detlef; Gross, Silke; Ansmann, Albert; Althausen, Dietrich; Freudenthaler, Volker; Weinzierl, Bernadett; Veira, Andreas; Petzold, Andreas
    Lidar measurements of mixed dust/smoke plumes over the tropical Atlantic ocean were carried out during the winter campaign of SAMUM-2 at Cape Verde. Profiles of backscatter and extinction coefficients, lidar ratios, and Ångstr¨om exponents related to pure biomass-burning aerosol from southern West Africa were extracted from these observations. Furthermore, these findings were used as input for an inversion algorithm to retrieve microphysical properties of pure smoke. Seven measurement days were found suitable for the procedure of aerosol-type separation and successive inversion of optical data that describe biomass-burning smoke. We inferred high smoke lidar ratios of 87 ± 17 sr at 355 nm and 79 ± 17 sr at 532 nm. Smoke lidar ratios and Ångstr¨om exponents are higher compared to the ones for the dust/smoke mixture. These numbers indicate higher absorption and smaller sizes for pure smoke particles compared to the dust/smoke mixture. Inversion of the smoke data set results in mean effective radii of 0.22 ± 0.08 μm with individual results varying between 0.10 and 0.36 μm. The single-scattering albedo for pure biomass-burning smoke was found to vary between 0.63 and 0.89 with a very low mean value of 0.75 ± 0.07. This is in good agreement with findings of airborne in situ measurements which showed values of 0.77 ± 0.03. Effective radii from the inversion were similar to the ones found for the fine mode of the in situ size distributions.
  • Item
    First triple-wavelength lidar observations of depolarization and extinction-to-backscatter ratios of Saharan dus
    (Katlenburg-Lindau : EGU, 2022) Haarig, Moritz; Ansmann, Albert; Engelmann, Ronny; Baars, Holger; Toledano, Carlos; Torres, Benjamin; Althausen, Dietrich; Radenz, Martin; Wandinger, Ulla
    Two layers of Saharan dust observed over Leipzig, Germany, in February and March 2021 were used to provide the first-ever lidar measurements of the dust lidar ratio (extinction-to-backscatter ratio) and linear depolarization ratio at all three classical lidar wavelengths (355, 532 and 1064gnm). The pure-dust conditions during the first event exhibit lidar ratios of 47g±g8, 50g±g5 and 69g±g14gsr and particle linear depolarization ratios of 0.242g±g0.024, 0.299g±g0.018 and 0.206g±g0.010 at wavelengths of 355, 532 and 1064gnm, respectively. The second, slightly polluted-dust case shows a similar spectral behavior of the lidar and depolarization ratio with values of the lidar ratio of 49g±g4, 46g±g5 and 57g±g9gsr and the depolarization ratio of 0.174g±g0.041, 0.298g±g0.016 and 0.242g±g0.007 at 355, 532 and 1064gnm, respectively. The results were compared with Aerosol Robotic Network (AERONET) version 3 (v3) inversion solutions and the Generalized Retrieval of Aerosol and Surface Properties (GRASP) at six and seven wavelengths. Both retrieval schemes make use of a spheroid shape model for mineral dust. The spectral slope of the lidar ratio from 532 to 1064gnm could be well reproduced by the AERONET and GRASP retrieval schemes. Higher lidar ratios in the UV were retrieved by AERONET and GRASP. The enhancement was probably caused by the influence of fine-mode pollution particles in the boundary layer which are included in the columnar photometer measurements. Significant differences between the measured and retrieved wavelength dependence of the particle linear depolarization ratio were found. The potential sources for these uncertainties are discussed.
  • Item
    Observation of Arabian and Saharan dust in Cyprus with a new generation of the smart Raman lidar Polly
    (Les Ulis : EDP Sciences, 2016) Engelmann, Ronny; Ansmann, Albert; Bühl, Johannes; Heese, Birgit; Baars, Holger; Althausen, Dietrich; Marinou, Eleni; Amiridis, Vassilis; Mamouri, Rodanthi-Elisavet; Vrekoussis, Mihalis
    The atmospheric science community demands for autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. Aiming this goal, TROPOS developed the fully automated multiwavelength polarization Raman lidar Polly since over 10 years [1, 2]. In cooperation with different partner research institutes the system was improved continuously. Our latest lidar developments include aside the “3+2” measurements also a near-range receiver to measure aerosol extinction and backscatter down to 120 m above the lidar, a water-vapor channel, and measurements of the linear depolarization at two wavelengths. The latest system was built in cooperation with the National Observatory of Athens (NOA). Its first campaign however was performed at the Cyprus Institute of Nicosia from March to April 2015, aiming specifically at the observation of ice nuclei with in-situ and lidar remote sensing techniques in the framework of BACCHUS [3, 4].
  • Item
    Sun photometer retrievals of Saharan dust properties over Barbados during SALTRACE
    (Katlenburg-Lindau : EGU, 2019) Toledano, Carlos; Torres, Benjamín; Velasco-Merino, Cristian; Althausen, Dietrich; Groß, Silke; Wiegner, Matthias; Weinzierl, Bernadett; Gasteiger, Josef; Ansmann, Albert; González, Ramiro; Mateos, David; Farrel, David; Müller, Thomas; Haarig, Moritz; Cachorro, Victoria E.
    The Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was devoted to the investigation of Saharan dust properties over the Caribbean. The campaign took place in June-July 2013. A wide set of ground-based and airborne aerosol instrumentation was deployed at the island of Barbados for a comprehensive experiment. Several sun photometers performed measurements during this campaign: two AERONET (Aerosol Robotic Network) Cimel sun photometers and the Sun and Sky Automatic Radiometer (SSARA). The sun photometers were co-located with the ground-based multi-wavelength lidars BERTHA (Backscatter Extinction lidar Ratio Temperature Humidity profiling Apparatus) and POLIS (Portable Lidar System). Aerosol properties derived from direct sun and sky radiance observations are analyzed, and a comparison with the co-located lidar and in situ data is provided. The time series of aerosol optical depth (AOD) allows identifying successive dust events with short periods in between in which the marine background conditions were observed. The moderate aerosol optical depth in the range of 0.3 to 0.6 was found during the dust periods. The sun photometer infrared channel at the 1640nm wavelength was used in the retrieval to investigate possible improvements to aerosol size retrievals, and it was expected to have a larger sensitivity to coarse particles. The comparison between column (aerosol optical depth) and surface (dust concentration) data demonstrates the connection between the Saharan Air Layer and the boundary layer in the Caribbean region, as is shown by the synchronized detection of the successive dust events in both datasets. However the differences of size distributions derived from sun photometer data and in situ observations reveal the difficulties in carrying out a column closure study. © 2019 All rights reserved.