Search Results

Now showing 1 - 10 of 20
  • Item
    Measurements of particle backscatter, extinction, and lidar ratio at 1064 nm with the rotational raman method in Polly-XT
    (Les Ulis : EDP Sciences, 2018) Engelmann, Ronny; Haarig, Moritz; Baars, Holger; Ansmann, Albert; Kottas, Michael; Marinou, Eleni; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.
    We replaced a 1064-nm interference filter of a Polly-XT lidar system by a 1058-nm filter to observe pure rotational Raman backscattering from atmospheric Nitrogen and Oxygen. Polly-XT is compact Raman lidar with a Nd:YAG laser (20 Hz, 200 mJ at 1064 nm) and a 30-cm telescope mirror which applies photomultipliers in photoncounting mode. We present the first measured signals at 1058 nm and the derived extinction profile from measurements aboard RV Polarstern and in Leipzig. In combination with another Polly-XT system we could also derive particle backscatter and lidar ratio profiles at 1064 nm.
  • Item
    Observation of Arabian and Saharan dust in Cyprus with a new generation of the smart Raman lidar Polly
    (Les Ulis : EDP Sciences, 2016) Engelmann, Ronny; Ansmann, Albert; Bühl, Johannes; Heese, Birgit; Baars, Holger; Althausen, Dietrich; Marinou, Eleni; Amiridis, Vassilis; Mamouri, Rodanthi-Elisavet; Vrekoussis, Mihalis
    The atmospheric science community demands for autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. Aiming this goal, TROPOS developed the fully automated multiwavelength polarization Raman lidar Polly since over 10 years [1, 2]. In cooperation with different partner research institutes the system was improved continuously. Our latest lidar developments include aside the “3+2” measurements also a near-range receiver to measure aerosol extinction and backscatter down to 120 m above the lidar, a water-vapor channel, and measurements of the linear depolarization at two wavelengths. The latest system was built in cooperation with the National Observatory of Athens (NOA). Its first campaign however was performed at the Cyprus Institute of Nicosia from March to April 2015, aiming specifically at the observation of ice nuclei with in-situ and lidar remote sensing techniques in the framework of BACCHUS [3, 4].
  • Item
    Lidar Ice nuclei estimates and how they relate with airborne in-situ measurements
    (Les Ulis : EDP Sciences, 2018) Marinou, Eleni; Amiridis, Vassilis; Ansmann, Albert; Nenes, Athanasios; Balis, Dimitris; Schrod, Jann; Binietoglou, Ioannis; Solomos, Stavros; Mamali, Dimitra; Engelmann, Ronny; Baars, Holger; Kottas, Michael; Tsekeri, Alexandra; Proestakis, Emmanouil; Kokkalis, Panagiotis; Goloub, Philippe; Cvetkovic, Bojan; Nichovic, Slobodan; Mamouri, Rodanthi; Pikridas, Michael; Stavroulas, Iasonas; Keleshis, Christos; Sciare, Jean
    By means of available ice nucleating particle (INP) parameterization schemes we compute profiles of dust INP number concentration utilizing Polly-XT and CALIPSO lidar observations during the INUIT-BACCHUS-ACTRIS 2016 campaign. The polarization-lidar photometer networking (POLIPHON) method is used to separate dust and non-dust aerosol backscatter, extinction, mass concentration, particle number concentration (for particles with radius > 250 nm) and surface area concentration. The INP final products are compared with aerosol samples collected from unmanned aircraft systems (UAS) and analyzed using the ice nucleus counter FRIDGE.
  • Item
    3D Structure of Saharan Dust Transport Towards Europe as Seen by CALIPSO
    (Les Ulis : EDP Sciences, 2016) Marinou, Eleni; Amiridis, Vassilis; Tsekeri, Alexandra; Solomos, Stavros; Kokkalis, Panos; Proestakis, Emmanouil; Kottas, Michael; Binietoglou, Ioannis; Zanis, Prodromos; Kazadzis, Stelios; Wandinger, Ulla; Ansmann, Albert
    We present a 3D multi-year monthly mean climatology of Saharan dust advection over Europe using an area-optimized pure dust CALIPSO product. The product has been developed by applying EARLINET-measured dust lidar ratios and depolarization-based dust discrimination methods and it is shown to have a very good agreement in terms of AOD when compared to AERONET over Europe/North Africa and MODIS over Mediterranean. The processing of such purely observational data reveals the certain seasonal patterns of dust transportation towards Europe and the Atlantic Ocean. The physical and optical properties of the dust layer are identified for several areas near the Saharan sources, over the Mediterranean and over continental Europe.
  • Item
    Ice nucleating particles over the Eastern Mediterranean measured by unmanned aircraft systems
    (Katlenburg-Lindau : EGU, 2017) Schrod, Jann; Weber, Daniel; Drücke, Jaqueline; Keleshis, Christos; Pikridas, Michael; Ebert, Martin; Cvetković, Bojan; Nickovic, Slobodan; Marinou, Eleni; Baars, Holger; Ansmann, Albert; Vrekoussis, Mihalis; Mihalopoulos, Nikos; Sciare, Jean; Curtius, Joachim; Bingemer, Heinz G.
    During an intensive field campaign on aerosol, clouds, and ice nucleation in the Eastern Mediterranean in April 2016, we measured the abundance of ice nucleating particles (INPs) in the lower troposphere from unmanned aircraft systems (UASs). Aerosol samples were collected by miniaturized electrostatic precipitators onboard the UASs at altitudes up to 2.5 km. The number of INPs in these samples, which are active in the deposition and condensation modes at temperatures from -20 to -30 °C, were analyzed immediately after collection on site using the ice nucleus counter FRIDGE (FRankfurt Ice nucleation Deposition freezinG Experiment). During the 1-month campaign, we encountered a series of Saharan dust plumes that traveled at several kilometers' altitude. Here we present INP data from 42 individual flights, together with aerosol number concentrations, observations of lidar backscattering, dust concentrations derived by the dust transport model DREAM (Dust Regional Atmospheric Model), and results from scanning electron microscopy. The effect of the dust plumes is reflected by the coincidence of INPs with the particulate matter (PM), the lidar signal, and the predicted dust mass of the model. This suggests that mineral dust or a constituent related to dust was a major contributor to the ice nucleating properties of the aerosol. Peak concentrations of above 100 INPs std L-1 were measured at -30 °C. The INP concentration in elevated plumes was on average a factor of 10 higher than at ground level. Since desert dust is transported for long distances over wide areas of the globe predominantly at several kilometers' altitude, we conclude that INP measurements at ground level may be of limited significance for the situation at the level of cloud formation.
  • Item
    Is the near-spherical shape the "new black" for smoke?
    (Katlenburg-Lindau : EGU, 2020) Gialitaki, Anna; Tsekeri, Alexandra; Amiridis, Vassilis; Ceolato, Romain; Paulien, Lucas; Kampouri, Anna; Gkikas, Antonis; Solomos, Stavros; Marinou, Eleni; Haarig, Moritz; Baars, Holger; Ansmann, Albert; Lapyonok, Tatyana; Lopatin, Anton; Dubovik, Oleg; Groß, Silke; Wirth, Martin; Tsichla, Maria; Tsikoudi, Ioanna; Balis, Dimitris
    We examine the capability of near-sphericalshaped particles to reproduce the triple-wavelength particle linear depolarization ratio (PLDR) and lidar ratio (LR) values measured over Europe for stratospheric smoke originating from Canadian wildfires. The smoke layers were detected both in the troposphere and the stratosphere, though in the latter case the particles presented PLDR values of almost 18% at 532 nm as well as a strong spectral dependence from the UV to the near-IR wavelength. Although recent simulation studies of rather complicated smoke particle morphologies have shown that heavily coated smoke aggregates can produce large PLDR, herein we propose a much simpler model of compact near-spherical smoke particles. This assumption allows for the reproduction of the observed intensive optical properties of stratospheric smoke, as well as their spectral dependence. We further examine whether an extension of the current Aerosol Robotic Network (AERONET) scattering model to include the near-spherical shapes could be of benefit to the AERONET retrieval for stratospheric smoke cases associated with enhanced PLDR. Results of our study illustrate the fact that triple-wavelength PLDR and LR lidar measurements can provide us with additional insight when it comes to particle characterization. © 2020 Author(s).
  • Item
    GARRLiC and LIRIC: Strengths and limitations for the characterization of dust and marine particles along with their mixtures
    (Katlenburg-Lindau : Copernicus, 2017) Tsekeri, Alexandra; Lopatin, Anton; Amiridis, Vassilis; Marinou, Eleni; Igloffstein, Julia; Siomos, Nikolaos; Solomos, Stavros; Kokkalis, Panagiotis; Engelmann, Ronny; Baars, Holger; Gratsea, Myrto; Raptis, Panagiotis I.; Binietoglou, Ioannis; Mihalopoulos, Nikolaos; Kalivitis, Nikolaos; Kouvarakis, Giorgos; Bartsotas, Nikolaos; Kallos, George; Basart, Sara; Schuettemeyer, Dirk; Wandinger, Ulla; Ansmann, Albert; Chaikovsky, Anatoli P.; Dubovik, Oleg
    The Generalized Aerosol Retrieval from Radiometer and Lidar Combined data algorithm (GARRLiC) and the LIdar-Radiometer Inversion Code (LIRIC) provide the opportunity to study the aerosol vertical distribution by combining ground-based lidar and sun-photometric measurements. Here, we utilize the capabilities of both algorithms for the characterization of Saharan dust and marine particles, along with their mixtures, in the south-eastern Mediterranean during the CHARacterization of Aerosol mixtures of Dust and Marine origin Experiment (CHARADMExp). Three case studies are presented, focusing on dust-dominated, marinedominated and dust-marine mixing conditions. GARRLiC and LIRIC achieve a satisfactory characterization for the dust-dominated case in terms of particle microphysical properties and concentration profiles. The marine-dominated and the mixture cases are more challenging for both algorithms, although GARRLiC manages to provide more detailed microphysical retrievals compared to AERONET, while LIRIC effectively discriminates dust and marine particles in its concentration profile retrievals. The results are also compared with modelled dust and marine concentration profiles and surface in situ measurements.
  • Item
    Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events
    (Katlenburg-Lindau : Copernicus, 2018) Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George
    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 μm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.
  • Item
    Application of the Garrlic algorithm for the characterization of dust and marine particles utilizing the lidar-sunphotometer synergy
    (Les Ulis : EDP Sciences, 2016) Tsekeri, Alexandra; Amiridis, Vassilis; Lopatin, Anton; Marinou, Eleni; Kokkalis, Panos; Solomos, Stavros; Engelmann, Ronny; Baars, Holger; Wandinger, Ulla; Ansmann, Albert; Schüttemeyer, Dirk; Dubovik, Oleg
    The importance of studying the vertical distribution of aerosol plumes is prominent in regional and climate studies. The new Generalized Aerosol Retrieval from Radiometer and Lidar Combined data algorithm (GARRLiC) provides this opportunity combining active and passive ground-based remote sensing from lidar and sunphotometer measurements. Here, we utilize GARRLiC capabilities for the characterization of Saharan dust and marine particles at the Eastern Mediterranean region during the Characterization of Aerosol mixtures of Dust And Marine origin Experiment (CHARADMExp). Two different case studies are presented, a dust-dominated case which we managed to characterize successfully in terms of the particle microphysical properties and their vertical distribution and a case of two separate layers of marine and dust particles for which the characterization proved to be more challenging.
  • Item
    The potential of elastic and polarization lidars to retrieve extinction profiles
    (Katlenburg-Lindau : Copernicus, 2020) Giannakaki, Elina; Kokkalis, Panos; Marinou, Eleni; Bartsotas, Nikolaos S.; Amiridis, Vassilis; Ansmann, Albert; Komppula, Mika
    A new method, called ElEx (elastic extinction), is proposed for the estimation of extinction coefficient lidar profiles using only the information provided by the elastic and polarization channels of a lidar system. The method is applicable to lidar measurements both during daytime and nighttime under well-defined aerosol mixtures. ElEx uses the particle backscatter profiles at 532 nm and the vertically resolved particle linear depolarization ratio measurements at the same wavelength. The particle linear depolarization ratio and the lidar ratio values of pure aerosol types are also taken from literature. The total extinction profile is then estimated and compared well with Raman retrievals. In this study, ElEx was applied in an aerosol mixture of marine and dust particles at Finokalia station during the CHARADMExp campaign. Any difference between ElEx and Raman extinction profiles indicates that the nondust component could be probably attributed to polluted marine or polluted continental aerosols. Comparison with sun photometer aerosol optical depth observations is performed as well during daytime. Differences in the total aerosol optical depth are varying between 1.2 % and 72 %, and these differences are attributed to the limited ability of the lidar to correctly represent the aerosol optical properties in the near range due to the overlap problem. © 2020 Author(s).