Search Results

Now showing 1 - 4 of 4
  • Item
    Dual-FOV Raman and Doppler lidar studies of aerosol-cloud interactions: Simultaneous profiling of aerosols, warm-cloud properties, and vertical wind
    (Hoboken, NJ : Wiley, 2014) Schmidt, Jörg; Ansmann, Albert; Bühl, Johannes; Baars, Holger; Wandinger, Ulla; Müller, Detlef; Malinka, Aleksey V.
    For the first time, colocated dual-field of view (dual-FOV) Raman lidar and Doppler lidar observations (case studies) of aerosol and cloud optical and microphysical properties below and within thin layered liquid water clouds are presented together with an updraft and downdraft characterization at cloud base. The goal of this work is to investigate the relationship between aerosol load close to cloud base and cloud characteristics of warm (purely liquid) clouds and the study of the influence of vertical motions and turbulent mixing on this relationship. We further use this opportunity to illustrate the applicability of the novel dual-FOV Raman lidar in this field of research. The dual-FOV lidar combines the well-established multiwavelength Raman lidar technique for aerosol retrievals and the multiple-scattering Raman lidar technique for profiling of the single-scattering extinction coefficient, effective radius, number concentration of the cloud droplets, and liquid water content. Key findings of our 3 year observations are presented in several case studies of optically thin altocumulus layers occurring in the lower free troposphere between 2.5 and 4 km height over Leipzig, Germany, during clean and polluted situations. For the clouds that we observed, the most direct link between aerosol proxy (particle extinction coefficient) and cloud proxy (cloud droplet number concentration) was found at cloud base during updraft periods. Above cloud base, additional processes resulting from turbulent mixing and entrainment of dry air make it difficult to determine the direct impact of aerosols on cloud processes.
  • Item
    Californian Wildfire Smoke Over Europe: A First Example of the Aerosol Observing Capabilities of Aeolus Compared to Ground‐Based Lidar
    (Hoboken, NJ : Wiley, 2021) Baars, Holger; Radenz, Martin; Floutsi, Athena Augusta; Engelmann, Ronny; Althausen, Dietrich; Heese, Birgit; Ansmann, Albert; Flament, Thomas; Dabas, Alain; Trapon, Dimitri; Reitebuch, Oliver; Bley, Sebastian; Wandinger, Ulla
    In September 2020, extremely strong wildfires in the western United States of America (i.e., mainly in California) produced large amounts of smoke, which was lifted into the free troposphere. These biomass-burning-aerosol (BBA) layers were transported from the US west coast toward central Europe within 3–4 days turning the sky milky and receiving high media attention. The present study characterizes this pronounced smoke plume above Leipzig, Germany, using a ground-based multiwavelength-Raman-polarization lidar and the aerosol/cloud product of ESA’s wind lidar mission Aeolus. An exceptional high smoke-AOT >0.4 was measured, yielding to a mean mass concentration of 8 μg m−3. The 355 nm lidar ratio was moderate at around 40–50 sr. The Aeolus-derived backscatter, extinction and lidar ratio profiles agree well with the observations of the ground-based lidar PollyXT considering the fact that Aeolus’ aerosol and cloud products are still preliminary and subject to ongoing algorithm improvements.
  • Item
    Radiative effect of aerosols above the northern and southern Atlantic Ocean as determined from shipborne lidar observations
    (Hoboken, NJ : Wiley, 2013) Kanitz, T.; Ansmann, Albert; Seifert, P.; Engelmann, R.; Althausen, D.
    The direct solar radiative effect of aerosols over the Atlantic Ocean was investigated on the basis of aerosol Raman/polarization lidar observations aboard the research vessel Polarsternbetween Germany (50°N) and either South America (50°S) or South Africa (40°S) in 2009 and 2010. First, a case study of complex aerosol conditions with marine aerosol, dust, and smoke particles in the boundary layer and free troposphere is presented to demonstrate that detailed knowledge of aerosol layering (boundary layer, free troposphere) and aerosol mixing state is required for an accurate determination of the resulting radiative effects. A statistical analysis based on all lidar observations revealed the highest daily mean radiative effect (−43±59 W m−2at the surface, −14±18 W m−2at top of atmosphere) in the latitudinal belt from 0°N–15°N in the Saharan dust outflow region. Mean aerosol radiative effects of the polluted northern and clean southern midlatitudes were contrasted. In the northern midlatitudes, the averaged aerosol radiative effect of all simulations was −24±33 W m−2at the surface which is a factor of 1.6 higher than at similar southern hemispheric latitudes. The simulations based on the lidar observations are in good agreement with colocated pyranometer measurements.
  • Item
    Seasonal variability of heterogeneous ice formation in stratiform clouds over the Amazon Basin
    (Hoboken, NJ : Wiley, 2014) Seifert, Patric; Kunz, Clara; Baars, Holger; Ansmann, Albert; Bühl, Johannes; Senf, Fabian; Engelmann, Ronny; Althausen, Dietrich; Artaxo, Paulo
    Based on 11months of polarization lidar observations in the Amazon Basin near Manaus, Brazil (2.3°S, 60°W), the relationship between temperature and heterogeneous ice formation efficiency in stratiform clouds was evaluated in the cloud top temperature range between -40 and 0°C. Between -30 and 0°C, ice-containing clouds are a factor of 1.5 to 2 more frequent during the dry season. Free-tropospheric aerosol backscatter profiles revealed a twofold to tenfold increase in aerosol load during the dry season and a Monitoring Atmospheric Composition and Climate - Interim Implementation reanalysis data set implies that the aerosol composition during the dry season is strongly influenced by biomass burning aerosol, whereas other components such as mineral dust do not vary strongly between the seasons. The injection of smoke accompanied by the likely dispersion of biological material, soil dust, or ash particles was identified as a possible source for the increased ice formation efficiency during the dry season. Key Points A unique 1year stratiform cloud data set was obtained for the Amazon Basin During the dry season, ice forms more efficient than during the wet season Biomass burning aerosols must be the source of ice nuclei during the dry season.