Search Results

Now showing 1 - 10 of 11
  • Item
    Light-Driven Proton Transfer for Cyclic and Temporal Switching of Enzymatic Nanoreactors
    (Weinheim : Wiley-VCH, 2020) Moreno, Silvia; Sharan, Priyanka; Engelke, Johanna; Gumz, Hannes; Boye, Susanne; Oertel, Ulrich; Wang, Peng; Banerjee, Susanta; Klajn, Rafal; Voit, Brigitte; Lederer, Albena; Appelhans, Dietmar
    Temporal activation of biological processes by visible light and subsequent return to an inactive state in the absence of light is an essential characteristic of photoreceptor cells. Inspired by these phenomena, light-responsive materials are very attractive due to the high spatiotemporal control of light irradiation, with light being able to precisely orchestrate processes repeatedly over many cycles. Herein, it is reported that light-driven proton transfer triggered by a merocyanine-based photoacid can be used to modulate the permeability of pH-responsive polymersomes through cyclic, temporally controlled protonation and deprotonation of the polymersome membrane. The membranes can undergo repeated light-driven swelling-contraction cycles without losing functional effectiveness. When applied to enzyme loaded-nanoreactors, this membrane responsiveness is used for the reversible control of enzymatic reactions. This combination of the merocyanine-based photoacid and pH-switchable nanoreactors results in rapidly responding and versatile supramolecular systems successfully used to switch enzymatic reactions ON and OFF on demand.
  • Item
    Multivalent Protein-Loaded pH-Stable Polymersomes: First Step toward Protein Targeted Therapeutics
    (Weinheim : Wiley-VCH, 2021) Moreno, Silvia; Boye, Susanne; Ajeilat, Hane George Al; Michen, Susanne; Tietze, Stefanie; Voit, Brigitte; Lederer, Albena; Temme, Achim; Appelhans, Dietmar
    Synthetic platforms for mimicking artificial organelles or for designing multivalent protein therapeutics for targeting cell surface, extracellular matrix, and tissues are in the focus of this study. Furthermore, the availability of a multi-functionalized and stimuli-responsive carrier system is required that can be used for sequential in situ and/or post loading of different proteins combined with post-functionalization steps. Until now, polymersomes exhibit excellent key characteristics to fulfill those requirements, which allow specific transport of proteins and the integration of proteins in different locations of polymeric vesicles. Herein, different approaches to fabricate multivalent protein-loaded, pH-responsive, and pH-stable polymersomes are shown, where a combination of therapeutic action and targeting can be achieved, by first choosing two model proteins such as human serum albumin and avidin. Validation of the molecular parameters of the multivalent biohybrids is performed by dynamic light scattering, cryo-TEM, fluorescence spectroscopy, and asymmetrical flow-field flow fractionation combined with light scattering techniques. To demonstrate targeting functions of protein-loaded polymersomes, avidin post-functionalized polymersomes are used for the molecular recognition of biotinylated cell surface receptors. These versatile protein-loaded polymersomes present new opportunities for designing sophisticated biomolecular nanoobjects in the field of (extracellular matrix) protein therapeutics.
  • Item
    Hydrogel patterns in microfluidic devices by do-it-yourself UV-photolithography suitable for very large-scale integration
    (Basel : MDPI, 2020) Beck, Anthony; Obst, Franziska; Busek, Mathias; Grünzner, Stefan; Mehner, Philipp J.; Paschew, Georgi; Appelhans, Dietmar; Voit, Brigitte; Richter, Andreas
    The interest in large-scale integrated (LSI) microfluidic systems that perform highthroughput biological and chemical laboratory investigations on a single chip is steadily growing. Such highly integrated Labs-on-a-Chip (LoC) provide fast analysis, high functionality, outstanding reproducibility at low cost per sample, and small demand of reagents. One LoC platform technology capable of LSI relies on specific intrinsically active polymers, the so-called stimuli-responsive hydrogels. Analogous to microelectronics, the active components of the chips can be realized by photolithographic micro-patterning of functional layers. The miniaturization potential and the integration degree of the microfluidic circuits depend on the capability of the photolithographic process to pattern hydrogel layers with high resolution, and they typically require expensive cleanroom equipment. Here, we propose, compare, and discuss a cost-efficient do-it-yourself (DIY) photolithographic set-up suitable to micro-pattern hydrogel-layers with a resolution as needed for very large-scale integrated (VLSI) microfluidics. The achievable structure dimensions are in the lower micrometer scale, down to a feature size of 20 µm with aspect ratios of 1:5 and maximum integration densities of 20,000 hydrogel patterns per cm. Furthermore, we demonstrate the effects of miniaturization on the efficiency of a hydrogel-based microreactor system by increasing the surface area to volume (SA:V) ratio of integrated bioactive hydrogels. We then determine and discuss a correlation between ultraviolet (UV) exposure time, cross-linking density of polymers, and the degree of immobilization of bioactive components. © 2020 by the authors.
  • Item
    Targeted RNAi of BIRC5/Survivin Using Antibody-Conjugated Poly(Propylene Imine)-Based Polyplexes Inhibits Growth of PSCA-Positive Tumors
    (Basel : MDPI, 2021) Jugel, Willi; Aigner, Achim; Michen, Susanne; Hagstotz, Alexander; Ewe, Alexander; Appelhans, Dietmar; Schackert, Gabriele; Temme, Achim; Tietze, Stefanie
    Delivery of siRNAs for the treatment of tumors critically depends on the development of efficient nucleic acid carrier systems. The complexation of dendritic polymers (dendrimers) results in nanoparticles, called dendriplexes, that protect siRNA from degradation and mediate non-specific cellular uptake of siRNA. However, large siRNA doses are required for in vivo use due to accumulation of the nanoparticles in sinks such as the lung, liver, and spleen. This suggests the exploration of targeted nanoparticles for enhancing tumor cell specificity and achieving higher siRNA levels in tumors. In this work, we report on the targeted delivery of a therapeutic siRNA specific for BIRC5/Survivin in vitro and in vivo to tumor cells expressing the surface marker prostate stem cell antigen (PSCA). For this, polyplexes consisting of single-chain antibody fragments specific for PSCA conjugated to siRNA/maltose-modified poly(propylene imine) dendriplexes were used. These polyplexes were endocytosed by PSCA-positive 293TPSCA/ffLuc and PC3PSCA cells and caused knockdown of reporter gene firefly luciferase and Survivin expression, respectively. In a therapeutic study in PC3PSCA xenograft-bearing mice, significant anti-tumor effects were observed upon systemic administration of the targeted polyplexes. This indicates superior anti-tumor efficacy when employing targeted delivery of Survivin-specific siRNA, based on the additive effects of siRNA-mediated Survivin knockdown in combination with scFv-mediated PSCA inhibition.
  • Item
    In situ identification and G4-PPI-His-Mal-dendrimer-induced reduction of early-stage amyloid aggregates in Alzheimer’s disease transgenic mice using synchrotron-based infrared imaging
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Benseny-Cases, Núria; Álvarez-Marimon, Elena; Aso, Ester; Carmona, Margarita; Klementieva, Oxana; Appelhans, Dietmar; Ferrer, Isidre; Cladera, Josep
    Amyloid plaques composed of Aβ amyloid peptides and neurofibrillary tangles are a pathological hallmark of Alzheimer Disease. In situ identification of early-stage amyloid aggregates in Alzheimer’s disease is relevant for their importance as potential targets for effective drugs. Synchrotron-based infrared imaging is here used to identify early-stage oligomeric/granular aggregated amyloid species in situ in the brain of APP/PS1 transgenic mice for the first time. Also, APP/PS1 mice show fibrillary aggregates at 6 and 12 months. A significant decreased burden of early-stage aggregates and fibrillary aggregates is obtained following treatment with poly(propylene imine) dendrimers with histidine-maltose shell (a neurodegenerative protector) in 6-month-old APP/PS1 mice, thus demonstrating their putative therapeutic properties of in AD models. Identification, localization, and characterization using infrared imaging of these non-fibrillary species in the cerebral cortex at early stages of AD progression in transgenic mice point to their relevance as putative pharmacological targets. No less important, early detection of these structures may be useful in the search for markers for non-invasive diagnostic techniques.
  • Item
    Hydrogel microvalves as control elements for parallelized enzymatic cascade reactions in microfluidics
    (Basel : MDPI, 2020) Obst, Franziska; Beck, Anthony; Bishayee, Chayan; Mehner, Philipp J.; Richter, Andreas; Voit, Brigitte; Appelhans, Dietmar
    Compartmentalized microfluidic devices with immobilized catalysts are a valuable tool for overcoming the incompatibility challenge in (bio) catalytic cascade reactions and high-throughput screening of multiple reaction parameters. To achieve flow control in microfluidics, stimuli-responsive hydrogel microvalves were previously introduced. However, an application of this valve concept for the control of multistep reactions was not yet shown. To fill this gap, we show the integration of thermoresponsive poly(N-isopropylacrylamide) (PNiPAAm) microvalves (diameter: 500 and 600 µm) into PDMS-on-glass microfluidic devices for the control of parallelized enzyme-catalyzed cascade reactions. As a proof-of-principle, the biocatalysts glucose oxidase (GOx), horseradish peroxidase (HRP) and myoglobin (Myo) were immobilized in photopatterned hydrogel dot arrays (diameter of the dots: 350 µm, amount of enzymes: 0.13-2.3 µg) within three compartments of the device. Switching of the microvalves was achieved within 4 to 6 s and thereby the fluid pathway of the enzyme substrate solution (5 mmol/L) in the device was determined. Consequently, either the enzyme cascade reaction GOx-HRP or GOx-Myo was performed and continuously quantified by ultraviolet-visible (UV-Vis) spectroscopy. The functionality of the microvalves was shown in four hourly switching cycles and visualized by the path-dependent substrate conversion. © 2020 by the authors.
  • Item
    Long-Term Retarded Release for the Proteasome Inhibitor Bortezomib through Temperature-Sensitive Dendritic Glycopolymers as Drug Delivery System from Calcium Phosphate Bone Cement
    (Weinheim : Wiley-VCH, 2021) Lai, Thu Hang; Keperscha, Bettina; Qiu, Xianping; Voit, Brigitte; Appelhans, Dietmar
    For the local treatment of bone defects, highly adaptable macromolecular architectures are still required as drug delivery system (DDS) in solid bone substitute materials. Novel DDS fabricated by host–guest interactions between β-cyclodextrin-modified dendritic glycopolymers and adamantane-modified temperature-sensitive polymers for the proteasome inhibitor bortezomib (BZM) is presented. These DDS induce a short- and long-term (up to two weeks) retarded release of BZM from calcium phosphate bone cement (CPC) in comparison to a burst release of the drug alone. Different release parameters of BZM/DDS/CPC are evaluated in phosphate buffer at 37 °C to further improve the long-term retarded release of BZM. This is achieved by increasing the amount of drug (50–100 µg) and/or DDS (100–400 µg) versus CPC (1 g), by adapting the complexes better to the porous bone cement environment, and by applying molar ratios of excess BZM toward DDS with 1:10, 1:25, and 1:100. The temperature-sensitive polymer shells of BZM/DDS complexes in CPC, which allow drug loading at room temperature but are collapsed at body temperature, support the retarding long-term release of BZM from DDS/CPC. Thus, the concept of temperature-sensitive DDS for BZM/DDS complexes in CPC works and matches key points for a local therapy of osteolytic bone lesions.
  • Item
    Construction of Eukaryotic Cell Biomimetics: Hierarchical Polymersomes-in-Proteinosome Multicompartment with Enzymatic Reactions Modulated Protein Transportation
    (Weinheim : Wiley-VCH, 2021) Wen, Ping; Wang, Xueyi; Moreno, Silvia; Boye, Susanne; Voigt, Dagmar; Voit, Brigitte; Huang, Xin; Appelhans, Dietmar
    The eukaryotic cell is a smart compartment containing an outer permeable membrane, a cytoskeleton, and functional organelles, presenting part structures for life. The integration of membrane-containing artificial organelles (=polymersomes) into a large microcompartment is a key step towards the establishment of exquisite cellular biomimetics with different membrane properties. Herein, an efficient way to construct a hierarchical multicompartment composed of a hydrogel-filled proteinosome hybrid structure with an outer homogeneous membrane, a smart cytoskeleton-like scaffold, and polymersomes is designed. Specially, this hybrid structure creates a micro-environment for pH-responsive polymersomes to execute a desired substance transport upon response to biological stimuli. Within the dynamic pH-stable skeleton of the protein hydrogels, polymersomes with loaded PEGylated insulin biomacromolecules demonstrate a pH-responsive reversible swelling-deswelling and a desirable, on-demand cargo release which is induced by the enzymatic oxidation of glucose to gluconic acid. This stimulus responsive behavior is realized by tunable on/off states through protonation of the polymersomes membrane under the enzymatic reaction of glucose oxidase, integrated in the skeleton of protein hydrogels. The integration of polymersomes-based hybrid structure into the proteinosome compartment and the stimuli-response on enzyme reactions fulfills the requirements of eukaryotic cell biomimetics in complex architectures and allows mimicking cellular transportation processes.
  • Item
    Matrix metalloproteinase-1 decorated polymersomes, a surface-active extracellular matrix therapeutic, potentiates collagen degradation and attenuates early liver fibrosis
    (New York, NY [u.a.] : Elsevier, 2021) Geervliet, Eline; Moreno, Silvia; Baiamonte, Luca; Booijink, Richell; Boye, Susanne; Wang, Peng; Voit, Brigitte; Lederer, Albena; Appelhans, Dietmar; Bansal, Ruchi
    Liver fibrosis affects millions of people worldwide and is rising vastly over the past decades. With no viable therapies available, liver transplantation is the only curative treatment for advanced diseased patients. Excessive accumulation of aberrant extracellular matrix (ECM) proteins, mostly collagens, produced by activated hepatic stellate cells (HSCs), is a hallmark of liver fibrosis. Several studies have suggested an inverse correlation between collagen-I degrading matrix metalloproteinase-1 (MMP-1) serum levels and liver fibrosis progression highlighting reduced MMP-1 levels are associated with poor disease prognosis in patients with liver fibrosis. We hypothesized that delivery of MMP-1 might potentiate collagen degradation and attenuate fibrosis development. In this study, we report a novel approach for the delivery of MMP-1 using MMP-1 decorated polymersomes (MMPsomes), as a surface-active vesicle-based ECM therapeutic, for the treatment of liver fibrosis. The storage-stable and enzymatically active MMPsomes were fabricated by a post-loading of Psomes with MMP-1. MMPsomes were extensively characterized for the physicochemical properties, MMP-1 surface localization, stability, enzymatic activity, and biological effects. Dose-dependent effects of MMP-1, and effects of MMPsomes versus MMP-1, empty polymersomes (Psomes) and MMP-1 + Psomes on gene and protein expression of collagen-I, MMP-1/TIMP-1 ratio, migration and cell viability were examined in TGFβ-activated human HSCs. Finally, the therapeutic effects of MMPsomes, compared to MMP-1, were evaluated in vivo in carbon-tetrachloride (CCl4)-induced early liver fibrosis mouse model. MMPsomes exhibited favorable physicochemical properties, MMP-1 surface localization and improved therapeutic efficacy in TGFβ-activated human HSCs in vitro. In CCl4-induced early liver fibrosis mouse model, MMPsomes inhibited intra-hepatic collagen-I (ECM marker, indicating early liver fibrosis) and F4/80 (marker for macrophages, indicating liver inflammation) expression. In conclusion, our results demonstrate an innovative approach of MMP-1 delivery, using surface-decorated MMPsomes, for alleviating liver fibrosis.
  • Item
    Nanoparticles for Directed Immunomodulation: Mannose-Functionalized Glycodendrimers Induce Interleukin-8 in Myeloid Cell Lines
    (Columbus, Ohio : American Chemical Society, 2021) Jatczak-Pawlik, Izabela; Gorzkiewicz, Michał; Studzian, Maciej; Zinke, Robin; Appelhans, Dietmar; Klajnert-Maculewicz, Barbara; Pułaski, Łukasz
    New therapeutic strategies for personalized medicine need to involve innovative pharmaceutical tools, for example, modular nanoparticles designed for direct immunomodulatory properties. We synthesized mannose-functionalized poly(propyleneimine) glycodendrimers with a novel architecture, where freely accessible mannose moieties are presented on poly(ethylene glycol)-based linkers embedded within an open-shell maltose coating. This design enhanced glycodendrimer bioactivity and led to complex functional effects in myeloid cells, with specific induction of interleukin-8 expression by mannose glycodendrimers detected in HL-60 and THP-1 cells. We concentrated on explaining the molecular mechanism of this phenomenon, which turned out to be different in both investigated cell lines: in HL-60 cells, transcriptional activation via AP-1 binding to the promoter predominated, while in THP-1 cells (which initially expressed less IL-8), induction was mediated mainly by mRNA stabilization. The success of directed immunomodulation, with synthetic design guided by assumptions about mannose-modified dendrimers as exogenous regulators of pro-inflammatory chemokine levels, opens new possibilities for designing bioactive nanoparticles. © 2021 The Authors. Published by American Chemical Society.