Search Results

Now showing 1 - 10 of 10
  • Item
    Toward Functional Synthetic Cells: In-Depth Study of Nanoparticle and Enzyme Diffusion through a Cross-Linked Polymersome Membrane
    (Weinheim : Wiley-VCH, 2019) Gumz, Hannes; Boye, Susanne; Iyisan, Banu; Krönert, Vera; Formanek, Petr; Voit, Brigitte; Lederer, Albena; Appelhans, Dietmar
    Understanding the diffusion of nanoparticles through permeable membranes in cell mimics paves the way for the construction of more sophisticated synthetic protocells with control over the exchange of nanoparticles or biomacromolecules between different compartments. Nanoparticles postloading by swollen pH switchable polymersomes is investigated and nanoparticles locations at or within polymersome membrane and polymersome lumen are precisely determined. Validation of transmembrane diffusion properties is performed based on nanoparticles of different origin—gold, glycopolymer protein mimics, and the enzymes myoglobin and esterase—with dimensions between 5 and 15 nm. This process is compared with the in situ loading of nanoparticles during polymersome formation and analyzed by advanced multiple-detector asymmetrical flow field-flow fractionation (AF4). These experiments are supported by complementary i) release studies of protein mimics from polymersomes, ii) stability and cyclic pH switches test for in polymersome encapsulated myoglobin, and iii) cryogenic transmission electron microscopy studies on nanoparticles loaded polymersomes. Different locations (e.g., membrane and/or lumen) are identified for the uptake of each protein. The protein locations are extracted from the increasing scaling parameters and the decreasing apparent density of enzyme-containing polymersomes as determined by AF4. Postloading demonstrates to be a valuable tool for the implementation of cell-like functions in polymersomes.
  • Item
    Photo-Cross-Linked Dual-Responsive Hollow Capsules Mimicking Cell Membrane for Controllable Cargo Post-Encapsulation and Release
    (Weinheim : Wiley-VCH, 2016) Liu, Xiaoling; Appelhans, Dietmar; Wei, Qiang; Voit, Brigitte
    Multifunctional and responsive hollow capsules are ideal candidates to establish highly sophisticated compartments mimicking cell membranes for controllable bio-inspired functions. For this purpose pH and temperature dual-responsive and photo-cross-linked hollow capsules, based on silica-templated layer-by-layer approach by using poly(N-isopropyl acrylamide)-blockpolymethacrylate) and polyallylamine, have been prepared to use them for the subsequent and easily available post-encapsulation process of proteinlike macromolecules at room temperature and pH 7.4 and their controllable release triggered by stimuli. The uptake and release properties of the hollow capsules for cargos are highly affected by changes in the external stimuli temperature (25, 37, or 45 °C) and internal stimuli pH of the phosphate-containing buffer solution (5.5 or 7.4), by the degree of photo-cross-linking, and the size of cargo. The photo-cross-linked and dual stimuli-responsive hollow capsules with different membrane permeability can be considered as attractive material for mimicking cell functions triggered by controllable uptake and release of different up to 11 nm sized biomolecules.
  • Item
    Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications
    (London : Soc., 2014) Appelhans, Dietmar; Klajnert-Maculewicz, Barbara; Janaszewska, Anna; Lazniewska, Joanna; Voit, Brigitte
    In this review we highlight the potential for biomedical applications of dendritic glycopolymers based on polyamine scaffolds. The complex interplay of the molecular characteristics of the dendritic architectures and their specific interactions with various (bio)molecules are elucidated with various examples. A special role of the individual sugar units attached to the dendritic scaffolds and their density is identified, which govern ionic and H-bond interactions, and biological targeting, but to a large extent are also responsible for the significantly reduced toxicity of the dendritic glycopolymers compared to their polyamine scaffolds. Thus, the application of dendritic glycopolymers in drug delivery systems for gene transfection but also as therapeutics in neurodegenerative diseases has great promise.
  • Item
    Synergistic effects of anionic/cationic dendrimers and levofloxacin on antibacterial activities
    (Basel : MDPI, 2019) Wrońska, Natalia; Majoral, Jean Pierre; Appelhans, Dietmar; Bryszewska, Maria; Lisowska, Katarzyna
    Despite the numerous studies on dendrimers for biomedical applications, the antibacterial activity of anionic phosphorus dendrimers has not been explored. In our research, we evaluated the antibacterial activity of modified polycationic and polyanionic dendrimers in combination with levofloxacin (LVFX) against Gram-negative (Escherichia coli ATCC 25922, Proteus hauseri ATCC 15442) and Gram-positive (Staphylococcus aureus ATCC 6538) bacteria. In the case of Gram-negative bacteria, we concluded that a combination of dendrimers and antibiotic gave satisfactory results due to a synergistic effect. The use of fluoroquinolone antibiotics, such as LVFX, not only caused resistance in disease-causing microorganisms but also increased environmental pollution. Therefore, reduction of drug dosage is of general interest. © 2019 by the authors.
  • Item
    Poly(propylene imine) dendrimers and amoxicillin as dual-action antibacterial agents
    (Basel : MDPI, 2015) Wrońska, Natalia; Felczak, Aleksandra; Zawadzka, Katarzyna; Poszepczyńska, Martyna; Różalska, Sylwia; Bryszewska, Maria; Appelhans, Dietmar; Lisowska, Katarzyna
    Besides acting as antimicrobial compounds, dendrimers can be considered as agents that improve the therapeutic effectiveness of existing antibiotics. In this work we present a new approach to using amoxicillin (AMX) against reference strains of common Gram-negative pathogens, alone and in combination with poly(propylene imine) (PPI) dendrimers, or derivatives thereof, in which 100% of the available hydrogen atoms are substituted with maltose (PPI 100%malG3). The concentrations of dendrimers used remained in the range non-toxic to eukaryotic cells. The results indicate that PPI dendrimers significantly enhance the antibacterial effect of amoxicillin alone, allowing antibiotic doses to be reduced. It is important to reduce doses of amoxicillin because its widespread use in medicine could lead to the development of bacterial resistance and environmental pollution. This is the first report on the combined antibacterial activity of PPI surface-modified maltose dendrimers and amoxicillin.
  • Item
    Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection
    (Basel : MDPI, 2019) Aso, Ester; Martinsson, Isak; Appelhans, Dietmar; Effenberg, Christiane; Benseny-Cases, Nuria; Cladera, Josep; Gouras, Gunnar; Ferrer, Isidre; Klementieva, Oxana
    Poly(propylene imine) dendrimers have been shown to be promising 3-dimensional polymers for the use in the pharmaceutical and biomedical applications. Our aims of this study were first, to synthesize a novel type of dendrimer with poly(propylene imine) core and maltose-histidine shell (G4HisMal) assessing if maltose-histidine shell can improve the biocompatibility and the ability to cross the blood-brain barrier, and second, to investigate the potential of G4HisMal to protect Alzheimer disease transgenic mice from memory impairment. Our data demonstrate that G4HisMal has significantly improved biocompatibility and ability to cross the blood-brain barrier in vivo. Therefore, we suggest that a maltose-histidine shell can be used to improve biocompatibility and ability to cross the blood-brain barrier of dendrimers. Moreover, G4HisMal demonstrated properties for synapse and memory protection when administered to Alzheimer disease transgenic mice. Therefore, G4HisMal can be considered as a promising drug candidate to prevent Alzheimer disease via synapse protection. © 2019 The Authors
  • Item
    Sugar-Modified Poly(propylene imine) Dendrimers Stimulate the NF-κB Pathway in a Myeloid Cell Line
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2016) Jatczak-Pawlik, Izabela; Gorzkiewicz, Michal; Studzian, Maciej; Appelhans, Dietmar; Voit, Brigitte; Pulaski, Lukasz; Klajnert-Maculewicz, Barbara
    Purpose: Fourth-generation poly(propylene imine) dendrimers fully surface-modified by maltose (dense shell, PPI-m DS) were shown to be biocompatible in cellular models, which is important for their application in drug delivery. We decided to verify also their inherent bioactivity, including immunomodulatory activity, for potential clinical applications. We tested their effects on the THP-1 monocytic cell line model of innate immunity effectors. Methods: To estimate the cytotoxicity of dendrimers the reasazurin assay was performed. The expression level of NF-κB targets: IGFBP3, TNFAIP3 and TNF was determined by quantitative real-time RT-PCR. Measurement of NF-κB p65 translocation from cytoplasm to nucleus was conducted with a high-content screening platform and binding of NF-κB to a consensus DNA probe was determined by electrophoretic mobility shift assay. The cytokine assay was performed to measure protein concentration of TNFalpha and IL-4. Results: We found that PPI-m DS did not impact THP-1 viability and growth even at high concentrations (up to 100 μM). They also did not induce expression of genes for important signaling pathways: Jak/STAT, Keap1/Nrf2 and ER stress. However, high concentrations of 4th generation PPI-m DS (25–100 μM), but not their 3rd generation counterparts, induced nuclear translocation of p65 NF-κB protein and its DNA-binding activity, leading to NF-κB-dependent increased expression of mRNA for NF-κB targets: IGFBP3, TNFAIP3 and TNF. However, no increase in pro-inflammatory cytokine secretion was detected. Conclusion: We conclude that maltose-modified PPI dendrimers of specific size could exert a modest immunomodulatory effect, which may be advantageous in clinical applications (e.g. adjuvant effect in anti-cancer vaccines).
  • Item
    Effects of dendritic core-shell glycoarchitectures on primary mesenchymal stem cells and osteoblasts obtained from different human donors
    (London : Biomed Central, 2015) Lautenschläger, Stefan; Striegler, Christin; Dakischew, Olga; Schütz, Iris; Szalay, Gabor; Schnettler, Reinhard; Heiß, Christian; Appelhans, Dietmar; Lips, Katrin S.
    The biological impact of novel nano-scaled drug delivery vehicles in highly topical therapies of bone diseases have to be investigated in vitro before starting in vivo trials. Highly desired features for these materials are a good cellular uptake, large transport capacity for drugs and a good bio-compatibility. Essentially the latter has to be addressed as first point on the agenda. We present a study on the biological interaction of maltose-modified poly(ethyleneimine) (PEI-Mal) on primary human mesenchymal stem cell, harvested from reaming debris (rdMSC) and osteoblasts obtained from four different male donors. PEI-Mal-nanoparticles with two different molecular weights of the PEI core (5000 g/mol for PEI-5k-Mal-B and 25,000 g/mol for PEI-25k-Mal-B) have been administered to both cell lines. As well dose as incubation-time dependent effects and interactions have been researched for concentrations between 1 μg/ml to 1 mg/ml and periods of 24 h up to 28 days. Studies conducted by different methods of microscopy as light microscopy, fluorescence microscopy, transmission-electron-microscopy and quantitative assays (LDH and DC-protein) indicate as well a good cellular uptake of the nanoparticles as a particle- and concentration-dependent impact on the cellular macro- and micro-structure of the rdMSC samples. In all experiments PEI-5k-Mal-B exhibits a superior biocompatibility compared to PEI-25k-Mal-B. At higher concentrations PEI-25k-Mal-B is toxic and induces a directly observable mitochondrial damage. The alkaline phosphatase assay (ALP), has been conducted to check on the possible influence of nanoparticles on the differentiation capabilities of rdMSC to osteoblasts. In addition the production of mineralized matrix has been shown by von-Kossa stained samples. No influence of the nanoparticles on the ALP per cell has been detected. Additionally, for all experiments, results are strongly influenced by a large donor-to-donor variability of the four different rdMSC samples. To summarize, while featuring a good cellular uptake, PEI-5k-Mal-B induces only minimal adverse effects and features clearly superior biocompatibility compared to the larger PEI-25k-Mal-B.
  • Item
    Targeted delivery of TLR3 agonist to tumor cells with single chain antibody fragment-conjugated nanoparticles induces type I-interferon response and apoptosis
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Schau, Isabell; Michen, Susanne; Hagstotz, Alexander; Janke, Andreas; Schackert, Gabriele; Appelhans, Dietmar; Temme, Achim
    Application of Toll-like receptor (TLR) agonists is a promising approach to treat cancer. In particular, nucleic acid-based TLR agonists such as short ssRNA and dsRNA molecules, which activate endosomal TLRs, can be delivered to tumors by use of nanoparticle delivery systems. However, such delivery systems bear unspecific side effects and poor pharmacokinetics. To overcome these limitations we developed a system for targeted delivery of a 50 bp dsRNA TLR3 agonist (Riboxxol) to treat PSCA-positive tumor cells, which consists of neutravidin conjugated to mono-biotinylated dsRNA and to humanized mono-biotinylated anti-PSCA single chain antibody derivative scFv(h-AM1)-BAP. The assembly of the components resulted in the formation of nanoparticle-like immunoconjugates designated Rapid Inducer of Cellular Inflammation and Apoptosis (RICIA). Anti-PSCA-RICIA exclusively delivered Riboxxol to PSCA-positive tumor cells as well as subcutaneous tumors. Uptake of anti-PSCA-RICIA induced a type I-interferon response and apoptosis in HEK-Blue hTLR3/PSCA reporter cells and PSCA-positive HT1376 bladder cancer cells in vitro. No such effects were observed when using RICIA coupled to an unspecific control antibody or when using Riboxxol alone. Treatment of HT1376 xenografts in immune-deficient hosts with targeted delivery of TLR3 agonist did not induce adverse effects and only modestly inhibited tumor growth when compared to controls. These results suggest promising activation of innate immune response and apoptosis upon selective delivery of TLR3 agonists in tumor cells. Yet, further studies using syngeneic and orthotopic tumor models are needed to fully exploit the potential of RICIA immunoconjugates. © 2019, The Author(s).
  • Item
    Reconstitution properties of biologically active polymersomes after cryogenic freezing and a freeze-drying process
    (London : RSC Publishing, 2018) Ccorahua, Robert; Moreno, Silvia; Gumz, Hannes; Sahre, Karin; Voit, Brigitte; Appelhans, Dietmar
    Reconstitution of biologically active polymersomes from the frozen or solid state into any fluid state is still a challenging issue for the design of new biological experiments and for the formulation of therapeutic agents. To gain knowledge about the reconstitution of pH-responsive and photo-crosslinked polymersomes, surface-functionalized and enzyme-containing polymersomers were cryogenically frozen (-20 °C) or freeze-dried with inulin as the lyoprotectant (0.1% w/v) and stored for a defined time period. Reconstituting those polymersomes in solution by thawing or a re-dispersing process revealed their original physical properties as well as their function as a pH-switchable enzymatic nanoreactor.