Search Results

Now showing 1 - 2 of 2
  • Item
    CRI-HOM: A novel chemical mechanism for simulating highly oxygenated organic molecules (HOMs) in global chemistry-aerosol-climate models
    (Katlenburg-Lindau : EGU, 2020) Weber, James; Archer-Nicholls, Scott; Griffiths, Paul; Berndt, Torsten; Jenkin, Michael; Gordon, Hamish; Knote, Christoph; Archibald, Alexander T.
    We present here results from a new mechanism, CRI-HOM, which we have developed to simulate the formation of highly oxygenated organic molecules (HOMs) from the gas-phase oxidation of-pinene, one of the most widely emitted biogenic volatile organic compounds (BVOCs) by mass. This concise scheme adds 12 species and 66 reactions to the Common Representative Intermediates (CRI) mechanism v2.2 Reduction 5 and enables the representation of semi-explicit HOM treatment suitable for long-term global chemistry-aerosol-climate modelling, within a comprehensive tropospheric chemical mechanism. The key features of the new mechanism are (i) representation of the autoxidation of peroxy radicals from the hydroxyl radical and ozone initiated reactions of-pinene, (ii) formation of multiple generations of peroxy radicals, (iii) formation of accretion products (dimers), and (iv) isoprene-driven suppression of accretion product formation, as observed in experiments. The mechanism has been constructed through optimisation against a series of flow tube laboratory experiments. The mechanism predicts a HOM yield of 2 %-4.5% under conditions of low to moderate NOx , in line with experimental observations, and reproduces qualitatively the decline in HOM yield and concentration at higher NOx levels. The mechanism gives a HOM yield that also increases with temperature, in line with observations, and our mechanism compares favourably to some of the limited observations of [HOM] observed in the boreal forest in Finland and in the southeast USA. The reproduction of isoprene-driven suppression of HOMs is a key step forward as it enables global climate models to capture the interaction between the major BVOC species, along with the potential climatic feedbacks. This suppression is demonstrated when the mechanism is used to simulate atmospheric profiles over the boreal forest and rainforest; different isoprene concentrations result in different [HOM] distributions, illustrating the importance of BVOC interactions in atmospheric composition and climate. Finally particle nucleation rates calculated from [HOM] in present-day and preindustrial atmospheres suggest that "sulfuric-acid-free"nucleation can compete effectively with other nucleation pathways in the boreal forest, particularly in the pre-industrial period, with important implications for the aerosol budget and radiative forcing. © Author(s) 2020.
  • Item
    Nitrate radicals and biogenic volatile organic compounds: Oxidation, mechanisms, and organic aerosol
    (München : European Geopyhsical Union, 2017) Ng, Nga Lee; Brown, Steven S.; Archibald, Alexander T.; Atlas, Elliot; Cohen, Ronald C.; Crowley, John N.; Day, Douglas A.; Donahue, Neil M.; Fry, Juliane L.; Fuchs, Hendrik; Griffin, Robert J.; Guzman, Marcelo I.; Herrmann, Hartmut; Hodzic, Alma; Iinuma, Yoshiteru; Jimenez, José L.; Kiendler-Scharr, Astrid; Lee, Ben H.; Luecken, Deborah J.; Mao, Jingqiu; McLaren, Robert; Mutzel, Anke; Osthoff, Hans D.; Ouyang, Bin; Picquet-Varrault, Benedicte; Platt, Ulrich; Pye, Havala O.T.; Rudich, Yinon; Schwantes, Rebecca H.; Shiraiwa, Manabu; Stutz, Jochen; Thornton, Joel A.; Tilgner, Andreas; Williams, Brent J.; Zaveri, Rahul A.
    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.