Search Results

Now showing 1 - 2 of 2
  • Item
    Understanding the Performance and Stability of Supported Ni-Co-Based Catalysts in Phenol HDO
    (Basel : MDPI, 2016) Huynh, Thuan; Armbruster, Udo; Kreyenschulte, Carsten; Nguyen, Luong; Phan, Binh; Nguyen, Duc; Martin, Andreas
    Performances of bimetallic catalysts (Ni-Co) supported on different acidic carriers (HZSM-5, HBeta, HY, ZrO2) and corresponding monometallic Ni catalysts in aqueous phase hydrodeoxygenation of phenol were compared in batch and continuous flow modes. The results revealed that the support acidity plays an important role in deoxygenation as it mainly controls the oxygen-removing steps in the reaction network. At the same time, sufficient hydrothermal stability of a solid catalyst is essential. Batch experiments revealed 10Ni10Co/HZSM-5 to be the best-performing catalyst in terms of conversion and cyclohexane yield. Complementary continuous runs provided more insights into the relationship between catalyst structure, efficiency and stability. After 24 h on-stream, the catalyst still reveals 100% conversion and a slight loss (from 100% to 90%) in liquid hydrocarbon selectivity. The observed alloy of Co with Ni increased dispersion and stability of Ni-active sites, and combination with HZSM-5 resulted in a well-balanced ratio of metal and acid sites which promoted all necessary steps in preferred pathways. This was proved by studies of fresh and spent catalysts using various characterization techniques (N2 physisorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and infrared spectroscopy of adsorbed pyridine (pyr-IR)).
  • Item
    Highly Selective Syngas/H2 Production via Partial Oxidation of CH4 Using (Ni, Co and Ni–Co)/ZrO2–Al2O3 Catalysts: Influence of Calcination Temperature
    (Basel : MDPI, 2019) Fakeeha, Anis Hamza; Arafat, Yasir; Ibrahim, Ahmed Aidid; Shaikh, Hamid; Atia, Hanan; Abasaeed, Ahmed Elhag; Armbruster, Udo; Al-Fatesh, Ahmed Sadeq
    In this study, Ni, Co and Ni–Co catalysts supported on binary oxide ZrO2–Al2O3 were synthesized by sol-gel method and characterized by means of various analytical techniques such as XRD, BET, TPR, TPD, TGA, SEM, and TEM. This catalytic system was then tested for syngas respective H2 production via partial oxidation of methane at 700 °C and 800 °C. The influence of calcination temperatures was studied and their impact on catalytic activity and stability was evaluated. It was observed that increasing the calcination temperature from 550 °C to 800 °C and addition of ZrO2 to Al2O3 enhances Ni metal-support interaction. This increases the catalytic activity and sintering resistance. Furthermore, ZrO2 provides higher oxygen storage capacity and stronger Lewis basicity which contributed to coke suppression, eventually leading to a more stable catalyst. It was also observed that, contrary to bimetallic catalysts, monometallic catalysts exhibit higher activity with higher calcination temperature. At the same time, Co and Ni–Co-based catalysts exhibit higher activity than Ni-based catalysts which was not expected. The Co-based catalyst calcined at 800 °C demonstrated excellent stability over 24 h on stream. In general, all catalysts demonstrated high CH4 conversion and exceptionally high selectivity to H2 (~98%) at 700 °C.