Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

Designing Hierarchical ZSM-5 Materials for Improved Production of LPG Olefins in the Catalytic Cracking of Triglycerides

2019, Vu, Xuan Hoan, Armbruster, Udo

LPG olefins (propene and butenes) are key building blocks in the petrochemical industry whose demand has been expanding steadily in recent years. The use of FCC (fluid catalytic cracking) units for conversion of triglycerides is a promising option for the future to boost production of LPG olefins. However, a need for innovative cracking catalysts is rising due to the different nature between petroleum and biomass-derived feedstocks. In this study, series of hierarchical ZSM-5 materials, namely, mesoporous ZSM-5, nanosized ZSM-5, and composite ZSM-5 were prepared, aiming to enhance the production of LPG olefins along with transportation fuels. Mesoporous ZSM-5 materials were synthesized by the postsynthetic modifications involving base treatment and subsequent acid washing, whereas nanosized ZSM-5 and composite ZSM-5 were synthesized by the direct-synthetic routes for a comparative purpose. The obtained materials were characterized by XRD, FTIR, N2 sorption, TEM, AAS, ICP-AES, and NH3-TPD, and their catalytic performance was assessed in the cracking of triolein as a representative of triglycerides under FCC conditions. It was found that the subsequent strong acid washing step of alkaline treated ZSM-5 for removal of aluminum debris and external acid sites is needed to improve the catalytic performance. The resulting mesoporous ZSM-5 material shows higher yields of the desired products, i.e., gasoline and LPG olefins than its parent, commercial ZSM-5 at the almost complete conversion (ca. 90 wt.%). The selectivity toward LPG olefins is also enhanced over all the hierarchical ZSM-5 materials, particularly high for composite ZSM-5 (ca. 94 wt.%). The improved diffusion and lowered acidity of the hierarchical ZSM-5 materials might be responsible for their superior catalytic performance. © 2019 Xuan Hoan Vu and Udo Armbruster.

Loading...
Thumbnail Image
Item

Methanation of CO2 on Ni/Al2O3 in a Structured Fixed-Bed Reactor—A Scale-Up Study

2017-5-15, Türks, Daniel, Mena, Hesham, Armbruster, Udo, Martin, Andreas

Due to the ongoing change of energy supply, the availability of a reliable high-capacity storage technology becomes increasingly important. While conventional large-scale facilities are either limited in capacity respective supply time or their extension potential is little (e.g., pumped storage power stations), decentralized units could contribute to energy transition. The concepts of PtX (power-to-X) storage technologies and in particular PtG (power-to-gas) aim at fixation of electric power in chemical compounds. CO2 hydrogenation (methanation) is the foundation of the PtG idea as H2 (via electrolysis) and CO2 are easily accessible. Methane produced in this way, often called substitute natural gas (SNG), is a promising solution since it can be stored in the existing gas grid, tanks or underground cavern storages. Methanation is characterized by a strong exothermic heat of reaction which has to be handled safely. This work aims at getting rid of extreme temperature hot-spots in a tube reactor by configuring the catalyst bed structure. Proof of concept studies began with a small tube reactor (V = 12.5 cm3) with a commercial 18 wt % Ni/Al2O3 catalyst. Later, a double-jacket tube reactor was built (V = 452 cm3), reaching a production rate of 50 L/h SNG. The proposed approach not only improves the heat management and process safety, but also increases the specific productivity and stability of the catalyst remarkably.

Loading...
Thumbnail Image
Item

Micro/Mesoporous Zeolitic Composites: Recent Developments in Synthesis and Catalytic Applications

2016, Vu, Xuan, Armbruster, Udo, Martin, Andreas

Micro/mesoporous zeolitic composites (MZCs) represent an important class of hierarchical zeolitic materials that have attracted increasing attention in recent years. By introducing an additional mesoporous phase interconnected with the microporosity of zeolites, a hierarchical porous system of MZCs is formed which facilitates molecular transport while preserving the intrinsic catalytic properties of zeolites. Thus, these materials offer novel perspectives for catalytic applications. Over the years, numerous synthesis strategies toward the formation of MZCs have been realized and their catalytic applications have been reported. In this review, the three main synthesis routes, namely direct synthesis using zeolite precursors, recrystallization of zeolites, and zeolitization of preformed mesoporous materials are thoroughly discussed, with focus on prior works and the most recent developments along with prominent examples given from the literature. In addition, the significant improvement in the catalytic properties of MZCs in a wide range of industrially relevant reactions is presented through several representative cases. Some perspectives for the future development of MZCs are also given.

Loading...
Thumbnail Image
Item

BMBF-Verbundprojekt: In-situ-Monitoring von anorganischen Präparationsprozessen : Abschlussbericht ; Berichtszeitraum: Jan. 2004 bis Dez. 2005

2006, Armbruster, Udo, Martin, Andreas, Martin, Andreas

[no abstract available]

Loading...
Thumbnail Image
Item

Catalytic Cracking of Triglyceride-Rich Biomass toward Lower Olefins over a Nano-ZSM-5/SBA-15 Analog Composite

2015, Vu, Xuan Hoan, Nguyen, Sura, Dang, Tung Thanh, Phan, Binh Minh Quoc, Nguyen, Duc Anh, Armbruster, Udo, Martin, Andreas

The catalytic cracking of triglyceride-rich biomass toward C2–C4 olefins was evaluated over a hierarchically textured nano-ZSM-5/SBA-15 analog composite (ZSC-24) under fluid catalytic cracking (FCC) conditions. The experiments were performed on a fully automated Single-Receiver Short-Contact-Time Microactivity Test unit (SR-SCT-MAT, Grace Davison) at 550 °C and different catalyst-to-oil mass ratios (0–1.2 g∙g−1). The ZSC-24 catalyst is very effective for transformation of triglycerides to valuable hydrocarbons, particularly lower olefins. The selectivity to C2–C4 olefins is remarkably high (>90%) throughout the investigated catalyst-to-oil ratio range. The superior catalytic performance of the ZSC-24 catalyst can be attributed to the combination of its medium acid site amount and improved molecular transport provided by the bimodal pore system, which effectively suppresses the secondary reactions of primarily formed lower olefins

Loading...
Thumbnail Image
Item

Understanding the Performance and Stability of Supported Ni-Co-Based Catalysts in Phenol HDO

2016, Huynh, Thuan, Armbruster, Udo, Kreyenschulte, Carsten, Nguyen, Luong, Phan, Binh, Nguyen, Duc, Martin, Andreas

Performances of bimetallic catalysts (Ni-Co) supported on different acidic carriers (HZSM-5, HBeta, HY, ZrO2) and corresponding monometallic Ni catalysts in aqueous phase hydrodeoxygenation of phenol were compared in batch and continuous flow modes. The results revealed that the support acidity plays an important role in deoxygenation as it mainly controls the oxygen-removing steps in the reaction network. At the same time, sufficient hydrothermal stability of a solid catalyst is essential. Batch experiments revealed 10Ni10Co/HZSM-5 to be the best-performing catalyst in terms of conversion and cyclohexane yield. Complementary continuous runs provided more insights into the relationship between catalyst structure, efficiency and stability. After 24 h on-stream, the catalyst still reveals 100% conversion and a slight loss (from 100% to 90%) in liquid hydrocarbon selectivity. The observed alloy of Co with Ni increased dispersion and stability of Ni-active sites, and combination with HZSM-5 resulted in a well-balanced ratio of metal and acid sites which promoted all necessary steps in preferred pathways. This was proved by studies of fresh and spent catalysts using various characterization techniques (N2 physisorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and infrared spectroscopy of adsorbed pyridine (pyr-IR)).

Loading...
Thumbnail Image
Item

Development of Highly Stable Low Ni Content Catalyst for Dry Reforming of CH4-Rich Feedstocks

2020, Ha, Quan Luu Manh, Lund, Henrik, Kreyenschulte, Carsten, Bartling, Stephan, Atia, Hanan, Vuong, Than Huyen, Wohlrab, Sebastian, Armbruster, Udo

Highly active and coking-resistant Ni catalysts suited for the dry reforming of CH4-rich gases (70 vol %, e. g. biogas or sour natural gas) were prepared starting from a Mg-rich Mg−Al hydrotalcite support precursor. Calcination at 1000 °C yields two phases, MgO and MgAl2O4 spinel. Complexation-deposition of Ni with citric acid on the preformed support as well as lanthanum addition yields a catalyst with remarkably low carbon accumulation over 100 h on stream attributed to both high Ni dispersion and preferred interactions of Ni with MgO on MgAl2O4. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Development of Active and Stable Low Nickel Content Catalysts for Dry Reforming of Methane

2017-5-16, Ha, Quan Luu Manh, Armbruster, Udo, Atia, Hanan, Schneider, Matthias, Lund, Henrik, Agostini, Giovanni, Radnik, Jörg, Vuong, Huyen Thanh, Martin, Andreas

Methane dry reforming (DRM) was investigated over highly active Ni catalysts with low metal content (2.5 wt %) supported on Mg-Al mixed oxide. The aim was to minimize carbon deposition and metal sites agglomeration on the working catalyst which are known to cause catalyst deactivation. The solids were characterized using N2 adsorption, X-ray diffraction, temperature-programmed reduction, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectroscopy. The results showed that MgO-Al2O3 solid solution phases are obtained when calcining Mg-Al hydrotalcite precursor in the temperature range of 550–800 °C. Such phases contribute to the high activity of catalysts with low Ni content even at low temperature (500 °C). Modifying the catalyst preparation with citric acid significantly slows the coking rate and reduces the size of large octahedrally coordinated NiO-like domains, which may easily agglomerate on the surface during DRM. The most effective Ni catalyst shows a stable DRM course over 60 h at high weight hourly space velocity with very low coke deposition. This is a promising result for considering such catalyst systems for further development of an industrial DRM technology.

Loading...
Thumbnail Image
Item

Nb-modified Ce/Ti oxide catalyst for the selective catalytic reduction of NO with NH3 at low temperature

2018, Mosrati, Jawaher, Atia, Hanan, Eckelt, Reinhard, Lund, Henrik, Agostini, Giovanni, Bentrup, Ursula, Rockstroh, Nils, Keller, Sonja, Armbruster, Udo, Mhamdi, Mourad

Recently, great attention has been paid to Ceria-based materials for selective catalytic reduction (SCR) with NH3 owing to their unique redox, oxygen storage, and acid-base properties. Two series of bimetallic catalysts issued from Titania modified by Ce and Nb were prepared by the one-step sol-gel method (SG) and by the sol-gel route followed by impregnation (WI). The resulting core-shell and bulk catalysts were tested in NH3-SCR of NOx. The impregnated Nb5/Ce40/Ti100 (WI) catalyst displayed 95% NOx conversion at 200 °C (GHSV = 60,000 mL·g−1·h−1, 1000 ppm NOx, 1000 ppm NH3, 5% O2/He) without forming N2O. The catalysts were characterized by various methods including ICP-OES, N2-physisorption, XRD, Raman, NH3-TPD, DRIFTS, XPS, and H2-TPR. The results showed that the introduction of Nb decreases the surface area and strengthens the surface acidity. This behavior can be explained by the strong interaction between Ceria and Titania which generates Ce-O-Ti units, as well as a high concentration of amorphous or highly dispersed Niobia. This should be the reason for the excellent performance of the catalyst prepared by the sol-gel method followed by impregnation. Furthermore, Nb5/Ce40/Ti100 (WI) has the largest NH3 adsorption capacity, which is helpful to promote the NH3-SCR reaction. The long-term stability and the effect of H2O on the catalysts were also evaluated.

Loading...
Thumbnail Image
Item

Highly Selective Syngas/H2 Production via Partial Oxidation of CH4 Using (Ni, Co and Ni–Co)/ZrO2–Al2O3 Catalysts: Influence of Calcination Temperature

2019, Fakeeha, Anis Hamza, Arafat, Yasir, Ibrahim, Ahmed Aidid, Shaikh, Hamid, Atia, Hanan, Abasaeed, Ahmed Elhag, Armbruster, Udo, Al-Fatesh, Ahmed Sadeq

In this study, Ni, Co and Ni–Co catalysts supported on binary oxide ZrO2–Al2O3 were synthesized by sol-gel method and characterized by means of various analytical techniques such as XRD, BET, TPR, TPD, TGA, SEM, and TEM. This catalytic system was then tested for syngas respective H2 production via partial oxidation of methane at 700 °C and 800 °C. The influence of calcination temperatures was studied and their impact on catalytic activity and stability was evaluated. It was observed that increasing the calcination temperature from 550 °C to 800 °C and addition of ZrO2 to Al2O3 enhances Ni metal-support interaction. This increases the catalytic activity and sintering resistance. Furthermore, ZrO2 provides higher oxygen storage capacity and stronger Lewis basicity which contributed to coke suppression, eventually leading to a more stable catalyst. It was also observed that, contrary to bimetallic catalysts, monometallic catalysts exhibit higher activity with higher calcination temperature. At the same time, Co and Ni–Co-based catalysts exhibit higher activity than Ni-based catalysts which was not expected. The Co-based catalyst calcined at 800 °C demonstrated excellent stability over 24 h on stream. In general, all catalysts demonstrated high CH4 conversion and exceptionally high selectivity to H2 (~98%) at 700 °C.