Search Results

Now showing 1 - 2 of 2
  • Item
    Global analysis of continental boundary layer new particle formation based on long-term measurements
    (Katlenburg-Lindau : EGU, 2018) Nieminen, Tuomo; Kerminen, Veli-Matti; Petäjä, Tuukka; Aalto, Pasi P.; Arshinov, Mikhail; Asmi, Eija; Baltensperger, Urs; Beddows, David C. S.; Beukes, Johan Paul; Collins, Don; Ding, Aijun; Harrison, Roy M.; Henzing, Bas; Hooda, Rakesh; Hu, Min; Hõrrak, Urmas; Kivekäs, Niku; Komsaare, Kaupo; Krejci, Radovan; Kristensson, Adam; Laakso, Lauri; Laaksonen, Ari; Leaitch, W. Richard; Lihavainen, Heikki; Mihalopoulos, Nikolaos; Németh, Zoltán; Nie, Wei; O'Dowd, Colin; Salma, Imre; Sellegri, Karine; Svenningsson, Birgitta; Swietlicki, Erik; Tunved, Peter; Ulevicius, Vidmantas; Vakkari, Ville; Vana, Marko; Wiedensohler, Alfred; Wu, Zhijun; Virtanen, Annele; Kulmala, Markku
    Atmospheric new particle formation (NPF) is an important phenomenon in terms of global particle number concentrations. Here we investigated the frequency of NPF, formation rates of 10 nm particles, and growth rates in the size range of 10–25 nm using at least 1 year of aerosol number size-distribution observations at 36 different locations around the world. The majority of these measurement sites are in the Northern Hemisphere. We found that the NPF frequency has a strong seasonal variability. At the measurement sites analyzed in this study, NPF occurs most frequently in March–May (on about 30 % of the days) and least frequently in December-February (about 10 % of the days). The median formation rate of 10 nm particles varies by about 3 orders of magnitude (0.01–10 cm−3 s−1) and the growth rate by about an order of magnitude (1–10 nm h−1). The smallest values of both formation and growth rates were observed at polar sites and the largest ones in urban environments or anthropogenically influenced rural sites. The correlation between the NPF event frequency and the particle formation and growth rate was at best moderate among the different measurement sites, as well as among the sites belonging to a certain environmental regime. For a better understanding of atmospheric NPF and its regional importance, we would need more observational data from different urban areas in practically all parts of the world, from additional remote and rural locations in North America, Asia, and most of the Southern Hemisphere (especially Australia), from polar areas, and from at least a few locations over the oceans.
  • Item
    Overview: Integrative and Comprehensive Understanding on Polar Environments (iCUPE) – concept and initial results
    (Katlenburg-Lindau : EGU, 2020) Petäjä, Tuukka; Duplissy, Ella-Maria; Tabakova, Ksenia; Schmale, Julia; Altstädter, Barbara; Ancellet, Gerard; Arshinov, Mikhail; Balin, Yurii; Baltensperger, Urs; Bange, Jens; Beamish, Alison; Belan, Boris; Berchet, Antoine; Bossi, Rossana; Cairns, Warren R.L.; Ebinghaus, Ralf; El Haddad, Imad; Ferreira-Araujo, Beatriz; Franck, Anna; Huang, Lin; Hyvärinen, Antti; Humbert, Angelika; Kalogridis, Athina-Cerise; Konstantinov, Pavel; Lampert, Astrid; MacLeod, Matthew; Magand, Olivier; Mahura, Alexander; Marelle, Louis; Masloboev, Vladimir; Moisseev, Dmitri; Moschos, Vaios; Neckel, Niklas; Onishi, Tatsuo; Osterwalder, Stefan; Ovaska, Aino; Paasonen, Pauli; Panchenko, Mikhail; Pankratov, Fidel; Pernov, Jakob B.; Platis, Andreas; Popovicheva, Olga; Raut, Jean-Christophe; Riandet, Aurélie; Sachs, Torsten; Salvatori, Rosamaria; Salzano, Roberto; Schröder, Ludwig; Schön, Martin; Shevchenko, Vladimir; Skov, Henrik; Sonke, Jeroen E.; Spolaor, Andrea; Stathopoulos, Vasileios K.; Strahlendorff, Mikko; Thomas, Jennie L.; Vitale, Vito; Vratolis, Sterios; Barbante, Carlo; Chabrillat, Sabine; Dommergue, Aurélien; Eleftheriadis, Konstantinos; Heilimo, Jyri; Law, Kathy S.; Massling, Andreas; Noe, Steffen M.; Paris, Jean-Daniel; Prévôt, André S.H.; Riipinen, Ilona; Wehner, Birgit; Xie, Zhiyong; Lappalainen, Hanna K.
    The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. We set up the ERA-PLANET Strand 4 project “iCUPE – integrative and Comprehensive Understanding on Polar Environments” to provide novel insights and observational data on global grand challenges with an Arctic focus. We utilize an integrated approach combining in situ observations, satellite remote sensing Earth observations (EOs), and multi-scale modeling to synthesize data from comprehensive long-term measurements, intensive campaigns, and satellites to deliver data products, metrics, and indicators to stakeholders concerning the environmental status, availability, and extraction of natural resources in the polar areas. The iCUPE work consists of thematic state-of-the-art research and the provision of novel data in atmospheric pollution, local sources and transboundary transport, the characterization of arctic surfaces and their changes, an assessment of the concentrations and impacts of heavy metals and persistent organic pollutants and their cycling, the quantification of emissions from natural resource extraction, and the validation and optimization of satellite Earth observation (EO) data streams. In this paper we introduce the iCUPE project and summarize initial results arising out of the integration of comprehensive in situ observations, satellite remote sensing, and multi-scale modeling in the Arctic context.