Search Results

Now showing 1 - 10 of 22
Loading...
Thumbnail Image
Item

Funnel-shaped microstructures for strong reversible adhesion

2017, Fischer, Sarah C.L., Groß, Katja, Abad, Oscar Torrents, Becker, MIchael M., Park, Euiyoung, Hensel, René, Arzt, Eduard

The potential of a new design of adhesive microstructures in the micrometer range for enhanced dry adhesion is investigated. Using a two-photon lithography system, complex 3D master structures of funnel-shaped microstructures are fabricated for replication into poly(ethylene glycol) dimethacrylate polymer. The diameter, the flap thickness, and the opening angle of the structures are varied systematically. The adhesion of single structures is characterized using a triboindenter system equipped with a flat diamond punch. The pull-off stresses obtained reaches values up to 5.6 MPa, which is higher than any values reported in literature for artificial dry adhesives. Experimental and numerical results suggest a characteristic attachment mechanism that leads to intimate contact formation from the edges toward the center of the structures. van der Waals interactions most likely dominate the adhesion, while contributions by suction or capillarity play only a minor role. Funnel-shaped microstructures are a promising concept for strong and reversible adhesives, applicable in novel pick and place handling systems or wall-walking robots.

Loading...
Thumbnail Image
Item

Self-Adhesive Silicone Microstructures for the Treatment of Tympanic Membrane Perforations

2021, Lana, Gabriela Moreira, Sorg, Katharina, Wenzel, Gentiana Ioana, Hecker, Dietmar, Hensel, René, Schick, Bernhard, Kruttwig, Klaus, Arzt, Eduard

Inspired by the gecko foot, polymeric microstructures have demonstrated reliable dry adhesion to both stiff objects and sensitive surfaces such as skin. Microstructured silicone patches are proposed, herein, for the treatment of tympanic membrane perforations with the aim of serving as an alternative for current surgical procedures that require anesthesia and ear canal packing. Sylgard 184 PDMS micropillars of 20 μm in diameter and 60 μm in length are topped by a Soft Skin Adhesive (SSA) MG7-1010 terminal layer, of about 25 μm thickness. The adhesion is evaluated by specially designed tack tests against explanted murine eardrums and, for comparison, against a rigid substrate. Functional effects are evaluated using auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAE). The adhesion strength of the microstructure and unstructured controls to explanted murine tympanic membranes is comparable (typically 12 kPa), but the microstructured patches are easier to handle by the surgeon. For the first time, partial recovery of hearing performance is measured immediately after patch application. The novel patches adhere without the need for further fixation, removing the need for ear canal packing. The proposed material design holds great promise for improving clinical treatments of tympanic membrane perforations.

Loading...
Thumbnail Image
Item

Bioinspired polydimethylsiloxane-based composites with high shear resistance against wet tissue

2016, Fischer, Sarah C.L., Levy, Oren, Kroner, Elmar, Hensel, René, Karp, Jeffrey M., Arzt, Eduard

Patterned microstructures represent a potential approach for improving current wound closure strategies. Microstructures can be fabricated by multiple techniques including replica molding of soft polymer-based materials. However, polymeric microstructures often lack the required shear resistance with tissue needed for wound closure. In this work, scalable microstructures made from composites based on polydimethylsiloxane (PDMS) were explored to enhance the shear resistance with wet tissue. To achieve suitable mechanical properties, PDMS was reinforced by incorporation of polyethylene (PE) particles into the pre-polymer and by coating PE particle reinforced substrates with parylene. The reinforced microstructures showed a 6-fold enhancement, the coated structures even a 13-fold enhancement in Young׳s modulus over pure PDMS. Shear tests of mushroom-shaped microstructures (diameter 450 µm, length 1 mm) against chicken muscle tissue demonstrate first correlations that will be useful for future design of wound closure or stabilization implants.

Loading...
Thumbnail Image
Item

Breakdown of continuum models for spherical probe adhesion tests on micropatterned surfaces

2021, Bettscheider, Simon, Yu, Dan, Foster, Kimberly, McMeeking, Robert, Arzt, Eduard, Hensel, René, Booth, Jamie A.

The adhesion of fibrillar dry adhesives, mimicking nature's principles of contact splitting, is commonly characterized by using axisymmetric probes having either a flat punch or spherical geometry. When using spherical probes, the adhesive pull-off force measured depends strongly on the compressive preload applied when making contact and on the geometry of the probe. Together, these effects complicate comparisons of the adhesive performance of micropatterned surfaces measured in different experiments. In this work we explore these issues, extending previous theoretical treatments of this problem by considering a fully compliant backing layer with an array of discrete elastic fibrils on its surface. We compare the results of the semi-analytical model presented to existing continuum theories, particularly with respect to determining a measurement system- and procedure-independent metric for the local adhesive strength of the fibrils from the global pull-off force. It is found that the discrete nature of the interface plays a dominant role across a broad range of relevant system parameters. Accordingly, a convenient tool for simulation of a discrete array is provided. An experimental procedure is recommended for use in conjunction with this tool in order to extract a value for the local adhesive strength of the fibrils, which is independent of the other system properties (probe radius, backing layer thickness, and preload) and thus is suitable for comparison across experimental studies.

Loading...
Thumbnail Image
Item

Engineering Micropatterned Dry Adhesives: From Contact Theory to Handling Applications

2018, Hensel, René, Moh, Karsten, Arzt, Eduard

Reversible adhesion is the key functionality to grip, place, and release objects nondestructively. Inspired by nature, micropatterned dry adhesives are promising candidates for this purpose and have attracted the attention of research groups worldwide. Their enhanced adhesion compared to nonpatterned surfaces is frequently demonstrated. An important conclusion is that the contact mechanics involved is at least as important as the surface energy and chemistry. In this paper, the roles of the contact geometry and mechanical properties are reviewed. With a focus on applications, the effects of substrate roughness and of temperature variations, and the long-term performance of micropatterned adhesives are discussed. The paper provides a link between the current, detailed understanding of micropatterned adhesives and emerging applications.

Loading...
Thumbnail Image
Item

Adhesion and Cellular Compatibility of Silicone-Based Skin Adhesives

2017, Fischer, Sarah C. L., Kruttwig, Klaus, Bandmann, Vera, Hensel, René, Arzt, Eduard

Pressure-sensitive adhesives based on silicone materials have emerging potential as adhesives in healthcare products, in particular for gentle skin adhesives. To this end, adhesion to rough skin and biocompatibility are crucial factors for a successful implementation. In this study, the mechanical, adhesive, and biological properties of the two-component poly(dimethylsiloxane) Soft Skin Adhesive MG 7-9800 (SSA, Dow Corning) have been investigated and compared to Sylgard 184. Different mixing ratios of SSA's components allow for tuning of the shear modulus, thereby modifying the adhesive properties of the polymer. To give a comprehensive insight, the authors have analyzed the interplay between pull-off stress, adhesion energy, and stretch of the adhesive films on smooth and rough surfaces. The focus is placed on the effects of substrate roughness and on low pressure oxygen plasma treatment of the adhesive films. SSA shows superior biocompatibility in in vitro cell culture experiments. High pull-off stresses in the range of 3 N cm−2 on a rough surface are achieved, promising broad application spectra for SSA-based healthcare products.

Loading...
Thumbnail Image
Item

Numerical study of adhesion enhancement by composite fibrils with soft tip layers

2016, Balijepalli, Ram Gopal, Fischer, Sarah C.L., Hensel, René, McMeeking, Robert M., Arzt, Eduard

Bio-inspired fibrillar surfaces with reversible adhesion to stiff substrates have been thoroughly investigated over the last decade. In this paper we propose a novel composite fibril consisting of a soft tip layer and stiffer stalk with differently shaped interfaces (flat vs. curved) between them. A tensile stress is applied remotely on the free end of the fibril whose other end adheres to a rigid substrate. The stress distributions and the resulting adhesion of such structures were numerically investigated under plane strain (2D) and axisymmetric (3D) conditions. The stress intensities were evaluated for different combinations of layer thickness and Young’s moduli. The adhesion strength values were found to increase for thinner layers and larger modulus ratio; these trends are also reflected in selected experimental results. The results of this paper provide a new strategy for optimizing adhesion strength of fibrillar surfaces.

Loading...
Thumbnail Image
Item

Composite pillars with a tunable interface for adhesion to rough substrates

2017, Fischer, Sarah C.L., Arzt, Eduard, Hensel, René

The benefits of synthetic fibrillar dry adhesives for temporary and reversible attachment to hard objects with smooth surfaces have been successfully demonstrated in previous studies. However, surface roughness induces a dramatic reduction in pull-off stresses and necessarily requires revised design concepts. Toward this aim, we introduce cylindrical two-phase single pillars, which are composed of a mechanically stiff stalk and a soft tip layer. Adhesion to smooth and rough substrates is shown to exceed that of conventional pillar structures. The adhesion characteristics can be tuned by varying the thickness of the soft tip layer, the ratio of the Young’s moduli and the curvature of the interface between the two phases. For rough substrates, adhesion values similar to those obtained on smooth substrates were achieved. Our concept of composite pillars overcomes current practical limitations caused by surface roughness and opens up fields of application where roughness is omnipresent.

Loading...
Thumbnail Image
Item

Adhesion and relaxation of a soft elastomer on surfaces with skin like roughness

2018, Fischer, Sarah, Boyadzhieva, Silviya, Hensel, René, Kruttwig, Klaus, Arzt, Eduard

For designing new skin adhesives, the complex mechanical interaction of soft elastomers with surfaces of various roughnesses needs to be better understood. We systematically studied the effects of a wide set of roughnesscharacteristics, film thickness, hold time and material relaxation on the adhesive behaviour of the silicone elastomer SSA 7–9800 (Dow Corning). As model surfaces, we used epoxy replicas obtained from substrates with roughness ranging from very smooth to skin-like. Our results demonstrate that films of thin and intermediate thickness (60 and 160 μm) adhered best to a sub-micron rough surface, with a pull-off stress of about 50 kPa. Significant variations in pull-off stress and detachment mechanism with roughness and hold time were found. In contrast, 320 μm thick films adhered with lower pull-off stress of about 17 kPa, but were less sensitive to roughness and hold time. It is demonstrated that the adhesion performance of the siliconefilms to rough surfaces can be tuned by tailoring the film thickness and contact time.

Loading...
Thumbnail Image
Item

Elevated temperature adhesion of bioinspired polymeric micropatterns to glass

2017, Barreau, Viktoriia, Yu, Dan, Hensel, René, Arzt, Eduard

Micropatterned polymer surfaces that operate at various temperatures are required for emerging technical applications such as handling of objects or space debris. As the mechanical properties of polymers can vary significantly with temperature, adhesion performance can exhibit large variability. In the present paper, we experimentally study temperature effects on the adhesion of micropatterned adhesives (pillar length 20 μm, aspect ratios 0.4 and 2) made from three different polymers, i.e., polydimethylsiloxane (PDMS), perfluoropolyether dimethacrylate (PFPEdma), and polyurethane (PU-ht). PU specimens showed the highest pull-off stresses of about 57 kPa at 60 °C, i.e., more than twice the value of unpatterned control samples. The work of separation similarly showed a maximum at that temperature, which was identified as the glass transition temperature, Tg. PDMS and PFPEdma specimens were tested above their Tg. As a result, the adhesion properties decreased monotonically (about 50% for both materials) for temperature elevation from 20 to 120 °C. Overall, the results obtained in our study indicate that the operating temperature related to the glass transition temperature should be considered as a significant parameter for assessing the adhesion performance of micropatterned adhesives and in the technical design of adhesion devices.