Search Results

Now showing 1 - 4 of 4
  • Item
    Indentation-induced two-way shape-memory effect in aged Ti-50.9 at.% Ni
    (Cambridge : Cambridge University Press, 2015) Frensemeier, Mareike; Arzt, Eduard; Qin, Enwei; Frick, Carl P.; Schneider, Andreas S.
    In this study, Vickers indentation was used to investigate the two-way shape-memory effect (TWSME) in an austenitic Ti-50.9 at.% Ni alloy, exposed to different heat treatments. Three aging treatments were used to manipulate the size of Ti3Ni4 precipitates. All samples were Vickers indented, and the indent depth was investigated as function of thermal cycling. The TWSME was found only in the material aged at 400 °C, which contained coherent precipitates. Thermal cycling shows stable TWSME, however, heating well above the austenite finish temperature lead to permanent austenitic protrusions. The results indicate that stabilized martensite plays a critical role in creating TWSME surfaces.
  • Item
    Fabrication of metal nanoparticle arrays by controlled decomposition of polymer particles
    (Bristol : IOP Publishing, 2013) Brodoceanu, Daniel; Fang, Cheng; Voelcker, Nicolas Hans; Bauer, Christina T.; Wonn, Anne; Kroner, Elmar; Arzt, Eduard; Kraus, Tobias
    We report a novel fabrication method for ordered arrays of metal nanoparticles that exploits the uniform arrangement of polymer beads deposited as close-packed monolayers. In contrast to colloidal lithography that applies particles as masks, we used thermal decomposition of the metal-covered particles to precisely define metal structures. Large arrays of noble metal (Au, Ag, Pt) nanoparticles were produced in a three-step process on silicon, fused silica and sapphire substrates, demonstrating the generality of this approach. Polystyrene spheres with diameters ranging between 110 nm and 1 µm were convectively assembled into crystalline monolayers, coated with metal and annealed in a resistive furnace or using an ethanol flame. The thermal decomposition of the polymer microspheres converted the metal layer into particles arranged in hexagonal arrays that preserved the order of the original monolayer. Both the particle size and the interparticle distance were adjusted via the thickness of the metal coating and the sphere diameter, respectively.
  • Item
    Functional surfaces for controlled adhesion
    (Saarbrücke : Leibniz-Institut für Neue Materialien, 2009) Arzt, Eduard; Del Campo, Aranzazu
    Adhesive joining with molecular (van der Waals) interactions without chemical glue is presently receiving much attention because of many potential applications. Research on how insects, spiders and geckos stick to surfaces has inspired a new paradigm: fibrillar surfaces with appropriate design can show much higher adhesion performance than flat surfaces. The insight gained in studying biological systems can be transferred to the development of optimized artificial attachment devices. By systematic variations of fiber diameter, aspect ratio and contact shape, we have produced, on a laboratory scale, artificial structures with adhesion strengths similar to the gecko. Further advances with switchable adhesion ("smart adhesives") have been demonstrated and may lead to interesting applications in medical products, sports equipment, construction materials and microfabrication.
  • Item
    Facile, fast, and inexpensive synthesis of monodisperse amorphous Nickel-Phosphide nanoparticles of predefined size
    (Cambridge : Royal Society of Chemistry, 2011) Arzt, Eduard; Moh, Karsten; Cavelius, Christian; Mandel, Karl; Dillon, Frank; Koos, Antal A.; Aslam, Zabeada; Jurkschat, Kerstin; Cullen, Frank; Crossley, Alison; Bishop, Hugh; Grobert, Nicole
    Monodisperse, size-controlled Ni–P nanoparticles were synthesised in a single step process using triphenyl-phosphane (TPP), oleylamine (OA), and Ni(II)acetyl-acetonate. The nanoparticles were amorphous, contained 30 at% P and their size was controlled between 7–21 nm simply by varying the amount of TPP. They are catalytically active for tailored carbon nanotube growth.