Search Results

Now showing 1 - 7 of 7
  • Item
    Engineering Micropatterned Dry Adhesives: From Contact Theory to Handling Applications
    (Weinheim : Wiley-VCH, 2018) Hensel, René; Moh, Karsten; Arzt, Eduard
    Reversible adhesion is the key functionality to grip, place, and release objects nondestructively. Inspired by nature, micropatterned dry adhesives are promising candidates for this purpose and have attracted the attention of research groups worldwide. Their enhanced adhesion compared to nonpatterned surfaces is frequently demonstrated. An important conclusion is that the contact mechanics involved is at least as important as the surface energy and chemistry. In this paper, the roles of the contact geometry and mechanical properties are reviewed. With a focus on applications, the effects of substrate roughness and of temperature variations, and the long-term performance of micropatterned adhesives are discussed. The paper provides a link between the current, detailed understanding of micropatterned adhesives and emerging applications.
  • Item
    Self-Adhesive Silicone Microstructures for the Treatment of Tympanic Membrane Perforations
    (Weinheim : Wiley-VCH, 2021) Lana, Gabriela Moreira; Sorg, Katharina; Wenzel, Gentiana Ioana; Hecker, Dietmar; Hensel, René; Schick, Bernhard; Kruttwig, Klaus; Arzt, Eduard
    Inspired by the gecko foot, polymeric microstructures have demonstrated reliable dry adhesion to both stiff objects and sensitive surfaces such as skin. Microstructured silicone patches are proposed, herein, for the treatment of tympanic membrane perforations with the aim of serving as an alternative for current surgical procedures that require anesthesia and ear canal packing. Sylgard 184 PDMS micropillars of 20 μm in diameter and 60 μm in length are topped by a Soft Skin Adhesive (SSA) MG7-1010 terminal layer, of about 25 μm thickness. The adhesion is evaluated by specially designed tack tests against explanted murine eardrums and, for comparison, against a rigid substrate. Functional effects are evaluated using auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAE). The adhesion strength of the microstructure and unstructured controls to explanted murine tympanic membranes is comparable (typically 12 kPa), but the microstructured patches are easier to handle by the surgeon. For the first time, partial recovery of hearing performance is measured immediately after patch application. The novel patches adhere without the need for further fixation, removing the need for ear canal packing. The proposed material design holds great promise for improving clinical treatments of tympanic membrane perforations.
  • Item
    Adhesion and Cellular Compatibility of Silicone-Based Skin Adhesives
    (Weinheim : Wiley-VCH, 2017) Fischer, Sarah C. L.; Kruttwig, Klaus; Bandmann, Vera; Hensel, René; Arzt, Eduard
    Pressure-sensitive adhesives based on silicone materials have emerging potential as adhesives in healthcare products, in particular for gentle skin adhesives. To this end, adhesion to rough skin and biocompatibility are crucial factors for a successful implementation. In this study, the mechanical, adhesive, and biological properties of the two-component poly(dimethylsiloxane) Soft Skin Adhesive MG 7-9800 (SSA, Dow Corning) have been investigated and compared to Sylgard 184. Different mixing ratios of SSA's components allow for tuning of the shear modulus, thereby modifying the adhesive properties of the polymer. To give a comprehensive insight, the authors have analyzed the interplay between pull-off stress, adhesion energy, and stretch of the adhesive films on smooth and rough surfaces. The focus is placed on the effects of substrate roughness and on low pressure oxygen plasma treatment of the adhesive films. SSA shows superior biocompatibility in in vitro cell culture experiments. High pull-off stresses in the range of 3 N cm−2 on a rough surface are achieved, promising broad application spectra for SSA-based healthcare products.
  • Item
    Switchable Underwater Adhesion by Deformable Cupped Microstructures
    (Weinheim : Wiley-VCH, 2020) Wang, Yue; Kang, Victor; Federle, Walter; Arzt, Eduard; Hensel, René
    Switchable underwater adhesion can be useful for numerous applications, but is extremely challenging due to the presence of water at the contact interface. Here, deformable cupped microstructures (diameter typically 100 µm, rim thickness 5 µm) are reported that can switch between high (≈1 MPa) and low (<0.2 MPa) adhesion strength by adjusting the retraction velocity from 100 to 0.1 µm s–1. The velocity at which the switch occurs is determined by specific design parameters of the cupped microstructure, such as the cup width and angle. The results are compared with theoretical estimates of water penetration into the contact zone and expansion of the cup during retraction. This work paves the way for controlling wet adhesion on demand and may inspire further applications in smart adhesives.
  • Item
    Tuning the Release Force of Microfibrillar Adhesives by Geometric Design
    (Weinheim : Wiley-VCH, 2022) Barnefske, Lena; Rundel, Fabian; Moh, Karsten; Hensel, René; Zhang, Xuan; Arzt, Eduard
    Switchable micropatterned adhesives exhibit high potential as novel resource-efficient grippers in future pick-and-place systems. In contrast with the adhesion acting during the “pick” phase, the release during the “place” phase has received little research attention so far. For objects smaller than typically 1 mm, release may become difficult as gravitational and inertial forces are no longer sufficient to allow shedding of the object. A compressive overload can initiate release by elastic buckling of the fibrils, but the switching ratio (ratio between high and low adhesion force) is typically only 2–3. In this work, new microfibrillar designs are reported exhibiting directional buckling with high switching ratios in the order of 20. Their functionality is illustrated by in situ optical observation of the contact signatures. Such micropatterns can enable the successful release of small objects with high placement accuracy.
  • Item
    Sliding Mechanism for Release of Superlight Objects from Micropatterned Adhesives
    (Weinheim : Wiley-VCH, 2022) Wang, Yue; Zhang, Xuan; Hensel, René; Arzt, Eduard
    Robotic handling and transfer printing of micrometer-sized superlight objects is a crucial technology in industrial fabrication. In contrast to the precise gripping with micropatterned adhesives, the reliable release of superlight objects with negligible weight is a great challenge. Slanted deformable polymer microstructures, with typical pillar cross-section 150 µm × 50 µm, are introduced with various tilt angles that enable a reduction of adhesion by a switching ratio of up to 500. The experiments demonstrate that the release from a smooth surface involves sliding of the contact during compression and subsequent peeling of the object during retraction. The handling of a 0.5 mg perfluorinated polymer micro-object with high accuracy in repeated pick-and-place cycles is demonstrated. Based on beam theory, the forces and moments acting at the tip of the microstructure are analyzed. As a result, an expression for the pull-off force is proposed as a function of the sliding distance and a guide to an optimized design for these release structures is provided.
  • Item
    In Situ Observation Reveals Local Detachment Mechanisms and Suction Effects in Micropatterned Adhesives
    (Weinheim : Wiley-VCH, 2019) Tinnemann, Verena; Hernández, Luissé; Fischer, Sarah C.L.; Arzt, Eduard; Bennewitz, Roland; Hensel, René
    Fibrillar adhesion pads of insects and geckoes have inspired the design of high-performance adhesives enabling a new generation of handling devices. Despite much progress over the last decade, the current understanding of these adhesives is limited to single contact pillars and the behavior of whole arrays is largely unexplored. In the study reported here, a novel approach is taken to gain insight into the detachment mechanisms of whole micropatterned arrays. Individual contacts are imaged by frustrated total internal reflection, allowing in situ observation of contact formation and separation during adhesion tests. The detachment of arrays is found to be governed by the distributed adhesion strength of individual pillars, but no collaborative effect mediated by elastic interactions can be detected. At the maximal force, about 30% of the mushroom structures are already detached. The adhesive forces decrease with reduced air pressure by 20% for the smooth and by 6% for the rough specimen. These contributions are attributed to a suction effect, whose strength depends critically on interfacial defects controlling the sealing quality of the contact. This dominates the detachment process and the resulting adhesion strength. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim