Search Results

Now showing 1 - 10 of 12
Loading...
Thumbnail Image
Item

Engineering Kitaev exchange in stacked iridate layers: Impact of inter-layer species on in-plane magnetism

2019, Yadav, R., Eldeeb, M.S., Ray, R., Aswartham, S., Sturza, M.I., Nishimoto, S., Van Den Brink, J., Hozoi, L.

Novel functionalities may be achieved in oxide electronics by appropriate stacking of planar oxide layers of different metallic species, MOp and M′Oq. The simplest mechanism allowing the tailoring of the electronic states and physical properties of such heterostructures is of electrostatic nature - charge imbalance between the M and M′ cations. Here we clarify the effect of interlayer electrostatics on the anisotropic Kitaev exchange in H3LiIr2O6, a recently proposed realization of the Kitaev spin liquid. By quantum chemical calculations, we show that the precise position of H+ cations between magnetically active [LiIr2O6]3- honeycomb-like layers has a strong impact on the magnitude of Kitaev interactions. In particular, it is found that stacking with straight interlayer O-H-O links is detrimental to in-plane Kitaev exchange since coordination by a single H-ion of the O ligand implies an axial Coulomb potential at the O site and unfavorable polarization of the O 2p orbitals mediating the Ir-Ir interactions. Our results therefore provide valuable guidelines for the rational design of Kitaev quantum magnets, indicating unprecedented Kitaev interactions of ≈40 meV if the linear interlayer linkage is removed.

Loading...
Thumbnail Image
Item

Separate tuning of nematicity and spin fluctuations to unravel the origin of superconductivity in FeSe

2020, Baek, S.-H., Ok, J.M., Kim, J.S., Aswartham, S., Morozov, I., Chareev, D., Urata, T., Tanigaki, K., Tanabe, Y., Büchner, B., Efremov, D.V.

The interplay of orbital and spin degrees of freedom is the fundamental characteristic in numerous condensed matter phenomena, including high-temperature superconductivity, quantum spin liquids, and topological semimetals. In iron-based superconductors (FeSCs), this causes superconductivity to emerge in the vicinity of two other instabilities: nematic and magnetic. Unveiling the mutual relationship among nematic order, spin fluctuations, and superconductivity has been a major challenge for research in FeSCs, but it is still controversial. Here, by carrying out 77Se nuclear magnetic resonance (NMR) measurements on FeSe single crystals, doped by cobalt and sulfur that serve as control parameters, we demonstrate that the superconducting transition temperature Tc increases in proportion to the strength of spin fluctuations, while it is independent of the nematic transition temperature Tnem. Our observation therefore directly implies that superconductivity in FeSe is essentially driven by spin fluctuations in the intermediate coupling regime, while nematic fluctuations have a marginal impact on Tc.

Loading...
Thumbnail Image
Item

Strain derivative of thermoelectric properties as a sensitive probe for nematicity

2021, Caglieris, F., Wuttke, C., Hong, C., Sykora, S., Kappenberger, R., Aswartham, S., Wurmehl, S., Büchner, B., Hess, C.

The nematic instability is an undebatable ingredient of the physics of iron-based superconductors. Yet, its origin remains enigmatic as it involves a fermiology with an intricate interplay of lattice-, orbital-, and spin degrees of freedom. It is well known that thermoelectric transport is an excellent probe for revealing even subtle signatures of instabilities and pertinent fluctuations. In this paper, we report a strong response of the thermoelectric transport properties of two underdoped 1111 iron-based superconductors to a vanishingly small strain. By introducing the strain derivative of the Seebeck and the Nernst coefficients, we provide a description of the nematic order parameter, proving the existence of an anisotropic Peltier-tensor beside an anisotropic conductivity tensor. Our measurements reveal that the transport nematic phenomenology is the result of the combined effect of both an anisotropic scattering time and Fermi surface distortions, pointing out that in a realistic description, abreast of the spin fluctuations also the orbital character is a fundamental ingredient. In addition, we show that nematic fluctuations universally relax in a Curie–Weiss fashion above TS in all the elasto-transport measurements and we provide evidences that nematicity must be band selective.

Loading...
Thumbnail Image
Item

Kitaev magnetism and fractionalized excitations in double perovskite Sm2ZnIrO6

2020, Singh, Birender, Vogl, M., Wurmehl, S., Aswartham, S., Büchner, B., Kumar, Pradeep

The quest for Kitaev spin liquids in particular three-dimensional solids is a long sought goal in condensed matter physics, as these states may give rise to exotic new types of quasiparticle excitations carrying fractional quantum numbers, namely Majorana fermionic excitations. Here we report the experimental signature of this characteristic feature of the Kitaev spin liquid via Raman measurements. Sm2ZnIrO6 is a strongly spin-orbit-coupled Mott insulator where Jeff=1/2 controls the physics, which provides striking evidence for this characteristic feature of the Kitaev spin liquid. As the temperature is lowered, we find that the spin excitations form a continuum in contrast to the conventional sharp modes expected in ordered antiferromagnets. Our observation of a broad magnetic continuum and anomalous renormalization of the phonon self-energy parameters shows the existence of fractionalization excitations in the double-perovskite structure, as theoretically conjectured in a Kitaev-Heisenberg geometrically frustrated double-perovskite system.

Loading...
Thumbnail Image
Item

Linkage between scattering rates and superconductivity in doped ferropnictides

2021, Fink, J., Rienks, E.D.L., Yao, M., Kurleto, R., Bannies, J., Aswartham, S., Morozov, I., Wurmehl, S., Wolf, T., Hardy, F., Meingast, C., Jeevan, H.S., Maiwald, J., Gegenwart, P., Felser, C., Buechner, B.

We report an angle-resolved photoemission study of a series of hole- and electron-doped iron-based superconductors, their parent compound BaFe2As2, and their cousins BaCr2As2 and BaCo2As2. We focus on the inner hole pocket, which is the hot spot in these compounds. More specifically, we determine the energy (E)-dependent scattering rate Γ(E) as a function of the 3d count. Moreover, for the compounds K0.4Ba0.6Fe2As2 and BaCr2As2, we derive the energy dependence of the renormalization function Z(E) and the imaginary part of the self-energy function ImΣ(E). We obtain a non-Fermi liquidlike linear in energy scattering rate Γ(E≫kBT), independent of the dopant concentration. The main result is that the slope β=Γ(E≫kBT)/E reaches its maxima near optimal doping and scales with the superconducting transition temperature. This supports the spin fluctuation model for superconductivity for these materials. In the optimally hole-doped compound, the slope of the scattering rate of the inner hole pocket is about three times bigger than the Planckian limit Γ(E)/E≈1. This result, together with the energy dependence of the renormalization function Z(E), signals very incoherent charge carriers in the normal state which transform at low temperatures to a coherent unconventional superconducting state.

Loading...
Thumbnail Image
Item

Intertwined electronic and magnetic structure of the van-der-Waals antiferromagnet Fe2P2S6

2023, Koitzsch, A., Klaproth, T., Selter, S., Shemerliuk, Y., Aswartham, S., Janson, O., Büchner, B., Knupfer, M.

Many unusual and promising properties have been reported recently for the transition metal trichalcogenides of the type MPS3 (M = V, Mn, Fe, Ni..), such as maintaining magnetic order to the atomically thin limit, ultra-sharp many-body excitons, metal-insulator transitions and, especially for Fe2P2S6, giant linear dichroism among others. Here we conduct a detailed investigation of the electronic structure of Fe2P2S6 using angle-resolved photoemission spectroscopy, q-dependent electron energy loss spectroscopy, optical spectroscopies and density functional theory. Fe2P2S6 is a Mott insulator with a gap of E gap ≈ 1.4 eV and zigzag antiferromagnetism below T N = 119 K. The low energy excitations are dominated by Fe 3d states. Large and sign-changing linear dichroism is observed. We provide a microscopic mechanism explaining key properties of the linear dichroism based on the correlated character of the electronic structure, thereby elucidating the nature of the spin-charge coupling in Fe2P2S6 and related materials.

Loading...
Thumbnail Image
Item

Strong spin resonance mode associated with suppression of soft magnetic ordering in hole-doped Ba1-xNaxFe2As2

2019, Waßer, F., Park, J.T., Aswartham, S., Wurmehl, S., Sidis, Y., Steffens, P., Schmalzl, K., Büchner, B., Braden, M.

Spin-resonance modes (SRM) are taken as evidence for magnetically driven pairing in Fe-based superconductors, but their character remains poorly understood. The broadness, the splitting and the spin-space anisotropies of SRMs contrast with the mostly accepted interpretation as spin excitons. We study hole-doped Ba1−xNaxFe2As2 that displays a spin reorientation transition. This reorientation has little impact on the overall appearance of the resonance excitations with a high-energy isotropic and a low-energy anisotropic mode. However, the strength of the anisotropic low-energy mode sharply peaks at the highest doping that still exhibits magnetic ordering resulting in the strongest SRM observed in any Fe-based superconductor so far. This remarkably strong SRM is accompanied by a loss of about half of the magnetic Bragg intensity upon entering the SC phase. Anisotropic SRMs thus can allow the system to compensate for the loss of exchange energy arising from the reduced antiferromagnetic correlations within the SC state.

Loading...
Thumbnail Image
Item

Strong effects of uniaxial pressure and short-range correlations in Cr2Ge2Te6

2022, Spachmann, S., Elghandour, A., Selter, S., Büchner, B., Aswartham, S., Klingeler, R.

Cr2Ge2Te6 is a quasi-two-dimensional semiconducting van der Waals ferromagnet down to the bilayer with great potential for technological applications. Engineering the critical temperature to achieve room-temperature applications is one of the critical next steps on this path. Here, we report high-resolution capacitance dilatometry studies on Cr2Ge2Te6 single crystals which directly prove significant magnetoelastic coupling and provide quantitative values of the large uniaxial pressure effects on long-range magnetic order (∂TC/∂pc=24.7 K/GPa and ∂TC/∂pab=−15.6 K/GPa) derived from thermodynamic relations. Moderate in-plane strain is thus sufficient to strongly enhance ferromagnetism in Cr2Ge2Te6 up to room temperature. Moreover, unambiguous signs of short-range magnetic order up to 200 K are found.

Loading...
Thumbnail Image
Item

Probing the reconstructed Fermi surface of antiferromagnetic BaFe2As2 in one domain

2019, Watson, M.D., Dudin, P., Rhodes, L.C., Evtushinsky, D.V., Iwasawa, H., Aswartham, S., Wurmehl, S., Büchner, B., Hoesch, M., Kim, T.K.

A fundamental part of the puzzle of unconventional superconductivity in the Fe-based superconductors is the understanding of the magnetic and nematic instabilities of the parent compounds. The issues of which of these can be considered the leading instability, and whether weak- or strong-coupling approaches are applicable, are both critical and contentious. Here, we revisit the electronic structure of BaFe2As2 using angle-resolved photoemission spectroscopy (ARPES). Our high-resolution measurements of samples “detwinned” by the application of a mechanical strain reveal a highly anisotropic 3D Fermi surface in the low-temperature antiferromagnetic phase. By comparison of the observed dispersions with ab initio calculations, we argue that overall it is magnetism, rather than orbital/nematic ordering, which is the dominant effect, reconstructing the electronic structure across the Fe 3d bandwidth. Finally, using a state-of-the-art nano-ARPES system, we reveal how the observed electronic dispersions vary in real space as the beam spot crosses domain boundaries in an unstrained sample, enabling the measurement of ARPES data from within single antiferromagnetic domains, and showing consistence with the effective mono-domain samples obtained by detwinning.

Loading...
Thumbnail Image
Item

Kramers doublets, phonons, crystal-field excitations, and their coupling in Nd2ZnIrO6

2020, Singh, Birender, Vogl, M., Wurmehl, S., Aswartham, S., Büchner, B., Kumar, Pradeep

We report comprehensive Raman-scattering measurements on a single crystal of double-perovskite Nd2ZnIrO6 in a temperature range of 4–330 K, spanning a broad spectral range from 20 to 5500cm−1. The paper focuses on lattice vibrations and electronic transitions involving Kramers doublets of the rare-earth Nd3+ ion with local C1 site symmetry. Temperature evolution of these quasiparticle excitations has allowed us to ascertain the intricate coupling between lattice and electronic degrees of freedom in Nd2ZnIrO6. Strong coupling between phonons and crystal-field excitation is observed via renormalization of the self-energy parameter of the phonons, i.e., peak frequency and linewidth. The phonon frequency shows abrupt hardening and linewidth narrowing below ∼100 K for the majority of the observed first-order phonons. We observed splitting of the lowest Kramers doublets of ground state (4I9/2) multiplets, i.e., lifting of the Kramers degeneracy, prominently at low temperature (below ∼100 K), attributed to the Nd-Nd/Ir exchange interactions and the intricate coupling with the lattice degrees of freedom. The observed splitting is of the order of ∼2–3 meV and is consistent with the estimated value. We also observed a large number of high-energy modes, 46 in total, attributed to the intraconfigurational transitions between 4f3 levels of Nd3+ coupled to the phonons reflected in their anomalous temperature evolution.