Search Results

Now showing 1 - 7 of 7
  • Item
    A comprehensive quality assessment framework for scientific events
    (Dordrecht [u.a.] : Springer Science + Business Media B.V., 2020) Vahdati, Sahar; Fathalla, Said; Lange, Christoph; Behrend, Andreas; Say, Aysegul; Say, Zeynep; Auer, Sören
    Systematic assessment of scientific events has become increasingly important for research communities. A range of metrics (e.g., citations, h-index) have been developed by different research communities to make such assessments effectual. However, most of the metrics for assessing the quality of less formal publication venues and events have not yet deeply investigated. It is also rather challenging to develop respective metrics because each research community has its own formal and informal rules of communication and quality standards. In this article, we develop a comprehensive framework of assessment metrics for evaluating scientific events and involved stakeholders. The resulting quality metrics are determined with respect to three general categories—events, persons, and bibliometrics. Our assessment methodology is empirically applied to several series of computer science events, such as conferences and workshops, using publicly available data for determining quality metrics. We show that the metrics’ values coincide with the intuitive agreement of the community on its “top conferences”. Our results demonstrate that highly-ranked events share similar profiles, including the provision of outstanding reviews, visiting diverse locations, having reputed people involved, and renowned sponsors.
  • Item
    Analysing the evolution of computer science events leveraging a scholarly knowledge graph: a scientometrics study of top-ranked events in the past decade
    (Dordrecht [u.a.] : Springer Science + Business Media B.V., 2021) Lackner, Arthur; Fathalla, Said; Nayyeri, Mojtaba; Behrend, Andreas; Manthey, Rainer; Auer, Sören; Lehmann, Jens; Vahdati, Sahar
    The publish or perish culture of scholarly communication results in quality and relevance to be are subordinate to quantity. Scientific events such as conferences play an important role in scholarly communication and knowledge exchange. Researchers in many fields, such as computer science, often need to search for events to publish their research results, establish connections for collaborations with other researchers and stay up to date with recent works. Researchers need to have a meta-research understanding of the quality of scientific events to publish in high-quality venues. However, there are many diverse and complex criteria to be explored for the evaluation of events. Thus, finding events with quality-related criteria becomes a time-consuming task for researchers and often results in an experience-based subjective evaluation. OpenResearch.org is a crowd-sourcing platform that provides features to explore previous and upcoming events of computer science, based on a knowledge graph. In this paper, we devise an ontology representing scientific events metadata. Furthermore, we introduce an analytical study of the evolution of Computer Science events leveraging the OpenResearch.org knowledge graph. We identify common characteristics of these events, formalize them, and combine them as a group of metrics. These metrics can be used by potential authors to identify high-quality events. On top of the improved ontology, we analyzed the metadata of renowned conferences in various computer science communities, such as VLDB, ISWC, ESWC, WIMS, and SEMANTiCS, in order to inspect their potential as event metrics.
  • Item
    EVENTSKG: A 5-Star Dataset of Top-Ranked Events in Eight Computer Science Communities
    (Berlin ; Heidelberg : Springer, 2019) Fathalla, Said; Lange, Christoph; Auer, Sören; Hitzler, Pascal; Fernández, Miriam; Janowicz, Krzysztof; Zaveri, Amrapali; Gray, Alasdair J.G.; Lopez, Vanessa; Haller, Armin; Hammar, Karl
    Metadata of scientific events has become increasingly available on the Web, albeit often as raw data in various formats, disregarding its semantics and interlinking relations. This leads to restricting the usability of this data for, e.g., subsequent analyses and reasoning. Therefore, there is a pressing need to represent this data in a semantic representation, i.e., Linked Data. We present the new release of the EVENTSKG dataset, comprising comprehensive semantic descriptions of scientific events of eight computer science communities. Currently, EVENTSKG is a 5-star dataset containing metadata of 73 top-ranked event series (almost 2,000 events) established over the last five decades. The new release is a Linked Open Dataset adhering to an updated version of the Scientific Events Ontology, a reference ontology for event metadata representation, leading to richer and cleaner data. To facilitate the maintenance of EVENTSKG and to ensure its sustainability, EVENTSKG is coupled with a Java API that enables users to add/update events metadata without going into the details of the representation of the dataset. We shed light on events characteristics by analyzing EVENTSKG data, which provides a flexible means for customization in order to better understand the characteristics of renowned CS events.
  • Item
    Ontology Design for Pharmaceutical Research Outcomes
    (Cham : Springer, 2020) Say, Zeynep; Fathalla, Said; Vahdati, Sahar; Lehmann, Jens; Auer, Sören; Hall, Mark; Merčun, Tanja; Risse, Thomas; Duchateau, Fabien
    The network of scholarly publishing involves generating and exchanging ideas, certifying research, publishing in order to disseminate findings, and preserving outputs. Despite enormous efforts in providing support for each of those steps in scholarly communication, identifying knowledge fragments is still a big challenge. This is due to the heterogeneous nature of the scholarly data and the current paradigm of distribution by publishing (mostly document-based) over journal articles, numerous repositories, and libraries. Therefore, transforming this paradigm to knowledge-based representation is expected to reform the knowledge sharing in the scholarly world. Although many movements have been initiated in recent years, non-technical scientific communities suffer from transforming document-based publishing to knowledge-based publishing. In this paper, we present a model (PharmSci) for scholarly publishing in the pharmaceutical research domain with the goal of facilitating knowledge discovery through effective ontology-based data integration. PharmSci provides machine-interpretable information to the knowledge discovery process. The principles and guidelines of the ontological engineering have been followed. Reasoning-based techniques are also presented in the design of the ontology to improve the quality of targeted tasks for data integration. The developed ontology is evaluated with a validation process and also a quality verification method.
  • Item
    SemSur: A Core Ontology for the Semantic Representation of Research Findings
    (Amsterdam [u.a.] : Elsevier, 2018) Fathalla, Said; Vahdati, Sahar; Auer, Sören; Lange, Christoph; Fensel, Anna; de Boer, Victor; Pellegrini, Tassilo; Kiesling, Elmar; Haslhofer, Bernhard; Hollink, Laura; Schindler, Alexander
    The way how research is communicated using text publications has not changed much over the past decades. We have the vision that ultimately researchers will work on a common structured knowledge base comprising comprehensive semantic and machine-comprehensible descriptions of their research, thus making research contributions more transparent and comparable. We present the SemSur ontology for semantically capturing the information commonly found in survey and review articles. SemSur is able to represent scientific results and to publish them in a comprehensive knowledge graph, which provides an efficient overview of a research field, and to compare research findings with related works in a structured way, thus saving researchers a significant amount of time and effort. The new release of SemSur covers more domains, defines better alignment with external ontologies and rules for eliciting implicit knowledge. We discuss possible applications and present an evaluation of our approach with the retrospective, exemplary semantification of a survey. We demonstrate the utility of the SemSur ontology to answer queries about the different research contributions covered by the survey. SemSur is currently used and maintained at OpenResearch.org.
  • Item
    Towards the semantic formalization of science
    (New York City, NY : Association for Computing Machinery, 2020) Fathalla, Said; Auer, Sören; Lange, Christoph
    The past decades have witnessed a huge growth in scholarly information published on the Web, mostly in unstructured or semi-structured formats, which hampers scientific literature exploration and scientometric studies. Past studies on ontologies for structuring scholarly information focused on describing scholarly articles' components, such as document structure, metadata and bibliographies, rather than the scientific work itself. Over the past four years, we have been developing the Science Knowledge Graph Ontologies (SKGO), a set of ontologies for modeling the research findings in various fields of modern science resulting in a knowledge graph. Here, we introduce this ontology suite and discuss the design considerations taken into account during its development. We deem that within the next years, a science knowledge graph is likely to become a crucial component for organizing and exploring scientific work.
  • Item
    Semantic Representation of Physics Research Data
    (Setúbal, Portugal : Science and Technology Publications, Lda, 2020) Say, Aysegul; Fathalla, Said; Vahdati, Sahar; Lehmann, Jens; Auer, Sören; Aveiro, David; Dietz, Jan; Filipe, Joaquim
    Improvements in web technologies and artificial intelligence enable novel, more data-driven research practices for scientists. However, scientific knowledge generated from data-intensive research practices is disseminated with unstructured formats, thus hindering the scholarly communication in various respects. The traditional document-based representation of scholarly information hampers the reusability of research contributions. To address this concern, we developed the Physics Ontology (PhySci) to represent physics-related scholarly data in a machine-interpretable format. PhySci facilitates knowledge exploration, comparison, and organization of such data by representing it as knowledge graphs. It establishes a unique conceptualization to increase the visibility and accessibility to the digital content of physics publications. We present the iterative design principles by outlining a methodology for its development and applying three different evaluation approaches: data-driven and criteria-based evaluation, as well as ontology testing.