Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Compacting frequent star patterns in RDF graphs

2020, Karim, Farah, Vidal, Maria-Esther, Auer, Sören

Knowledge graphs have become a popular formalism for representing entities and their properties using a graph data model, e.g., the Resource Description Framework (RDF). An RDF graph comprises entities of the same type connected to objects or other entities using labeled edges annotated with properties. RDF graphs usually contain entities that share the same objects in a certain group of properties, i.e., they match star patterns composed of these properties and objects. In case the number of these entities or properties in these star patterns is large, the size of the RDF graph and query processing are negatively impacted; we refer these star patterns as frequent star patterns. We address the problem of identifying frequent star patterns in RDF graphs and devise the concept of factorized RDF graphs, which denote compact representations of RDF graphs where the number of frequent star patterns is minimized. We also develop computational methods to identify frequent star patterns and generate a factorized RDF graph, where compact RDF molecules replace frequent star patterns. A compact RDF molecule of a frequent star pattern denotes an RDF subgraph that instantiates the corresponding star pattern. Instead of having all the entities matching the original frequent star pattern, a surrogate entity is added and related to the properties of the frequent star pattern; it is linked to the entities that originally match the frequent star pattern. Since the edges between the entities and the objects in the frequent star pattern are replaced by edges between these entities and the surrogate entity of the compact RDF molecule, the size of the RDF graph is reduced. We evaluate the performance of our factorization techniques on several RDF graph benchmarks and compare with a baseline built on top gSpan, a state-of-the-art algorithm to detect frequent patterns. The outcomes evidence the efficiency of proposed approach and show that our techniques are able to reduce execution time of the baseline approach in at least three orders of magnitude. Additionally, RDF graph size can be reduced by up to 66.56% while data represented in the original RDF graph is preserved.

Loading...
Thumbnail Image
Item

A comprehensive quality assessment framework for scientific events

2020, Vahdati, Sahar, Fathalla, Said, Lange, Christoph, Behrend, Andreas, Say, Aysegul, Say, Zeynep, Auer, Sören

Systematic assessment of scientific events has become increasingly important for research communities. A range of metrics (e.g., citations, h-index) have been developed by different research communities to make such assessments effectual. However, most of the metrics for assessing the quality of less formal publication venues and events have not yet deeply investigated. It is also rather challenging to develop respective metrics because each research community has its own formal and informal rules of communication and quality standards. In this article, we develop a comprehensive framework of assessment metrics for evaluating scientific events and involved stakeholders. The resulting quality metrics are determined with respect to three general categories—events, persons, and bibliometrics. Our assessment methodology is empirically applied to several series of computer science events, such as conferences and workshops, using publicly available data for determining quality metrics. We show that the metrics’ values coincide with the intuitive agreement of the community on its “top conferences”. Our results demonstrate that highly-ranked events share similar profiles, including the provision of outstanding reviews, visiting diverse locations, having reputed people involved, and renowned sponsors.

Loading...
Thumbnail Image
Item

Development of a Domain-Specific Ontology to Support Research Data Management for the Tailored Forming Technology

2020, Sheveleva, Tatyana, Koepler, Oliver, Mozgova, Iryna, Lachmayer, Roland, Auer, Sören

The global trend towards the comprehensive digitisation of technologies in product manufacturing is leading to radical changes in engineering processes and requires a new extended understanding of data handling. The amounts of data to be considered are becoming larger and more complex. Data can originate from process simulations, machines used or subsequent analyses, which together with the resulting components serve as a complete and reproducible description of the process. Within the Collaborative Research Centre "Process Chain for Manufacturing of Hybrid High Performance Components by Tailored Forming", interdisciplinary work is being carried out on the development of process chains for the production of hybrid components. The management of the generated data and descriptive metadata, the support of the process steps and preliminary and subsequent data analysis are fundamental challenges. The objective is a continuous, standardised data management according to the FAIR Data Principles so that process-specific data and parameters can be transferred together with the components or samples to subsequent processes, individual process designs can take place and processes of machine learning can be accelerated. A central element is the collaborative development of a domain-specific ontology for a semantic description of data and processes of the entire process chain.