Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Ranking facts for explaining answers to elementary science questions

2023, D’Souza, Jennifer, Mulang, Isaiah Onando, Auer, Sören

In multiple-choice exams, students select one answer from among typically four choices and can explain why they made that particular choice. Students are good at understanding natural language questions and based on their domain knowledge can easily infer the question's answer by “connecting the dots” across various pertinent facts. Considering automated reasoning for elementary science question answering, we address the novel task of generating explanations for answers from human-authored facts. For this, we examine the practically scalable framework of feature-rich support vector machines leveraging domain-targeted, hand-crafted features. Explanations are created from a human-annotated set of nearly 5000 candidate facts in the WorldTree corpus. Our aim is to obtain better matches for valid facts of an explanation for the correct answer of a question over the available fact candidates. To this end, our features offer a comprehensive linguistic and semantic unification paradigm. The machine learning problem is the preference ordering of facts, for which we test pointwise regression versus pairwise learning-to-rank. Our contributions, originating from comprehensive evaluations against nine existing systems, are (1) a case study in which two preference ordering approaches are systematically compared, and where the pointwise approach is shown to outperform the pairwise approach, thus adding to the existing survey of observations on this topic; (2) since our system outperforms a highly-effective TF-IDF-based IR technique by 3.5 and 4.9 points on the development and test sets, respectively, it demonstrates some of the further task improvement possibilities (e.g., in terms of an efficient learning algorithm, semantic features) on this task; (3) it is a practically competent approach that can outperform some variants of BERT-based reranking models; and (4) the human-engineered features make it an interpretable machine learning model for the task.

Loading...
Thumbnail Image
Item

A Scholarly Knowledge Graph-Powered Dashboard: Implementation and User Evaluation

2022, Lezhnina, Olga, Kismihók, Gábor, Prinz, Manuel, Stocker, Markus, Auer, Sören

Scholarly knowledge graphs provide researchers with a novel modality of information retrieval, and their wider use in academia is beneficial for the digitalization of published works and the development of scholarly communication. To increase the acceptance of scholarly knowledge graphs, we present a dashboard, which visualizes the research contributions on an educational science topic in the frame of the Open Research Knowledge Graph (ORKG). As dashboards are created at the intersection of computer science, graphic design, and human-technology interaction, we used these three perspectives to develop a multi-relational visualization tool aimed at improving the user experience. According to preliminary results of the user evaluation survey, the dashboard was perceived as more appealing than the baseline ORKG-powered interface. Our findings can be used for the development of scholarly knowledge graph-powered dashboards in different domains, thus facilitating acceptance of these novel instruments by research communities and increasing versatility in scholarly communication.