Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Crowdsourcing Scholarly Discourse Annotations

2021, Oelen, Allard, Stocker, Markus, Auer, Sören

The number of scholarly publications grows steadily every year and it becomes harder to find, assess and compare scholarly knowledge effectively. Scholarly knowledge graphs have the potential to address these challenges. However, creating such graphs remains a complex task. We propose a method to crowdsource structured scholarly knowledge from paper authors with a web-based user interface supported by artificial intelligence. The interface enables authors to select key sentences for annotation. It integrates multiple machine learning algorithms to assist authors during the annotation, including class recommendation and key sentence highlighting. We envision that the interface is integrated in paper submission processes for which we define three main task requirements: The task has to be . We evaluated the interface with a user study in which participants were assigned the task to annotate one of their own articles. With the resulting data, we determined whether the participants were successfully able to perform the task. Furthermore, we evaluated the interface’s usability and the participant’s attitude towards the interface with a survey. The results suggest that sentence annotation is a feasible task for researchers and that they do not object to annotate their articles during the submission process.

Loading...
Thumbnail Image
Item

Analysing the evolution of computer science events leveraging a scholarly knowledge graph: a scientometrics study of top-ranked events in the past decade

2021, Lackner, Arthur, Fathalla, Said, Nayyeri, Mojtaba, Behrend, Andreas, Manthey, Rainer, Auer, Sören, Lehmann, Jens, Vahdati, Sahar

The publish or perish culture of scholarly communication results in quality and relevance to be are subordinate to quantity. Scientific events such as conferences play an important role in scholarly communication and knowledge exchange. Researchers in many fields, such as computer science, often need to search for events to publish their research results, establish connections for collaborations with other researchers and stay up to date with recent works. Researchers need to have a meta-research understanding of the quality of scientific events to publish in high-quality venues. However, there are many diverse and complex criteria to be explored for the evaluation of events. Thus, finding events with quality-related criteria becomes a time-consuming task for researchers and often results in an experience-based subjective evaluation. OpenResearch.org is a crowd-sourcing platform that provides features to explore previous and upcoming events of computer science, based on a knowledge graph. In this paper, we devise an ontology representing scientific events metadata. Furthermore, we introduce an analytical study of the evolution of Computer Science events leveraging the OpenResearch.org knowledge graph. We identify common characteristics of these events, formalize them, and combine them as a group of metrics. These metrics can be used by potential authors to identify high-quality events. On top of the improved ontology, we analyzed the metadata of renowned conferences in various computer science communities, such as VLDB, ISWC, ESWC, WIMS, and SEMANTiCS, in order to inspect their potential as event metrics.

Loading...
Thumbnail Image
Item

Scholarly event characteristics in four fields of science: a metrics-based analysis

2020, Fathalla, S., Vahdati, S., Lange, C., Auer, Sören

One of the key channels of scholarly knowledge exchange are scholarly events such as conferences, workshops, symposiums, etc.; such events are especially important and popular in Computer Science, Engineering, and Natural Sciences.However, scholars encounter problems in finding relevant information about upcoming events and statistics on their historic evolution.In order to obtain a better understanding of scholarly event characteristics in four fields of science, we analyzed the metadata of scholarly events of four major fields of science, namely Computer Science, Physics, Engineering, and Mathematics using Scholarly Events Quality Assessment suite, a suite of ten metrics.In particular, we analyzed renowned scholarly events belonging to five sub-fields within Computer Science, namely World Wide Web, Computer Vision, Software Engineering, Data Management, as well as Security and Privacy.This analysis is based on a systematic approach using descriptive statistics as well as exploratory data analysis. The findings are on the one hand interesting to observe the general evolution and success factors of scholarly events; on the other hand, they allow (prospective) event organizers, publishers, and committee members to assess the progress of their event over time and compare it to other events in the same field; and finally, they help researchers to make more informed decisions when selecting suitable venues for presenting their work.Based on these findings, a set of recommendations has been concluded to different stakeholders, involving event organizers, potential authors, proceedings publishers, and sponsors. Our comprehensive dataset of scholarly events of the aforementioned fields is openly available in a semantic format and maintained collaboratively at OpenResearch.org.

Loading...
Thumbnail Image
Item

A comprehensive quality assessment framework for scientific events

2020, Vahdati, Sahar, Fathalla, Said, Lange, Christoph, Behrend, Andreas, Say, Aysegul, Say, Zeynep, Auer, Sören

Systematic assessment of scientific events has become increasingly important for research communities. A range of metrics (e.g., citations, h-index) have been developed by different research communities to make such assessments effectual. However, most of the metrics for assessing the quality of less formal publication venues and events have not yet deeply investigated. It is also rather challenging to develop respective metrics because each research community has its own formal and informal rules of communication and quality standards. In this article, we develop a comprehensive framework of assessment metrics for evaluating scientific events and involved stakeholders. The resulting quality metrics are determined with respect to three general categories—events, persons, and bibliometrics. Our assessment methodology is empirically applied to several series of computer science events, such as conferences and workshops, using publicly available data for determining quality metrics. We show that the metrics’ values coincide with the intuitive agreement of the community on its “top conferences”. Our results demonstrate that highly-ranked events share similar profiles, including the provision of outstanding reviews, visiting diverse locations, having reputed people involved, and renowned sponsors.