Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Representing Semantified Biological Assays in the Open Research Knowledge Graph

2020, Anteghini, Marco, D'Souza, Jennifer, Martins dos Santos, Vitor A.P., Auer, Sören, Ishita, Emi, Pang, Natalie Lee San, Zhou, Lihong

In the biotechnology and biomedical domains, recent text mining efforts advocate for machine-interpretable, and preferably, semantified, documentation formats of laboratory processes. This includes wet-lab protocols, (in)organic materials synthesis reactions, genetic manipulations and procedures for faster computer-mediated analysis and predictions. Herein, we present our work on the representation of semantified bioassays in the Open Research Knowledge Graph (ORKG). In particular, we describe a semantification system work-in-progress to generate, automatically and quickly, the critical semantified bioassay data mass needed to foster a consistent user audience to adopt the ORKG for recording their bioassays and facilitate the organisation of research, according to FAIR principles.

Loading...
Thumbnail Image
Item

Sentence, Phrase, and Triple Annotations to Build a Knowledge Graph of Natural Language Processing Contributions - A Trial Dataset

2021, D’Souza, Jennifer, Auer, Sören

This work aims to normalize the NlpContributions scheme (henceforward, NlpContributionGraph) to structure, directly from article sentences, the contributions information in Natural Language Processing (NLP) scholarly articles via a two-stage annotation methodology: 1) pilot stage—to define the scheme (described in prior work); and 2) adjudication stage—to normalize the graphing model (the focus of this paper). We re-annotate, a second time, the contributions-pertinent information across 50 prior-annotated NLP scholarly articles in terms of a data pipeline comprising: contribution-centered sentences, phrases, and triple statements. To this end, specifically, care was taken in the adjudication annotation stage to reduce annotation noise while formulating the guidelines for our proposed novel NLP contributions structuring and graphing scheme. The application of NlpContributionGraph on the 50 articles resulted finally in a dataset of 900 contribution-focused sentences, 4,702 contribution-information-centered phrases, and 2,980 surface-structured triples. The intra-annotation agreement between the first and second stages, in terms of F1-score, was 67.92% for sentences, 41.82% for phrases, and 22.31% for triple statements indicating that with increased granularity of the information, the annotation decision variance is greater. NlpContributionGraph has limited scope for structuring scholarly contributions compared with STEM (Science, Technology, Engineering, and Medicine) scholarly knowledge at large. Further, the annotation scheme in this work is designed by only an intra-annotator consensus—a single annotator first annotated the data to propose the initial scheme, following which, the same annotator reannotated the data to normalize the annotations in an adjudication stage. However, the expected goal of this work is to achieve a standardized retrospective model of capturing NLP contributions from scholarly articles. This would entail a larger initiative of enlisting multiple annotators to accommodate different worldviews into a “single” set of structures and relationships as the final scheme. Given that the initial scheme is first proposed and the complexity of the annotation task in the realistic timeframe, our intra-annotation procedure is well-suited. Nevertheless, the model proposed in this work is presently limited since it does not incorporate multiple annotator worldviews. This is planned as future work to produce a robust model. We demonstrate NlpContributionGraph data integrated into the Open Research Knowledge Graph (ORKG), a next-generation KG-based digital library with intelligent computations enabled over structured scholarly knowledge, as a viable aid to assist researchers in their day-to-day tasks. NlpContributionGraph is a novel scheme to annotate research contributions from NLP articles and integrate them in a knowledge graph, which to the best of our knowledge does not exist in the community. Furthermore, our quantitative evaluations over the two-stage annotation tasks offer insights into task difficulty.

Loading...
Thumbnail Image
Item

Easy Semantification of Bioassays

2022, Anteghini, Marco, D’Souza, Jennifer, dos Santos, Vitor A. P. Martins, Auer, Sören

Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. We propose a solution for automatically semantifying biological assays. Our solution contrasts the problem of automated semantification as labeling versus clustering where the two methods are on opposite ends of the method complexity spectrum. Characteristically modeling our problem, we find the clustering solution significantly outperforms a deep neural network state-of-the-art labeling approach. This novel contribution is based on two factors: 1) a learning objective closely modeled after the data outperforms an alternative approach with sophisticated semantic modeling; 2) automatically semantifying biological assays achieves a high performance F1 of nearly 83%, which to our knowledge is the first reported standardized evaluation of the task offering a strong benchmark model.